








Nanjing Jieya Extrusion Equipment Co., Ltd. (referred to as "Jieya") was established in 2004. It has the manufacturing capacity of various types of production lines with an annual production and sales of more than 350 sets. Its comprehensive capability ranks in the forefront of the Nanjing twin screw extruders industry. The company focuses on the R&D and manufacturing of various production lines centered on co-rotating twin-screw extruders and single-screw extruders. The product applications cover compounding, modified granulation, polymerization, devolatilization, one-step molding, and recyclable resources, etc.
Project Director Mr Chen introduced that every industry has competition, but specific to a certain market segment, the competitors involved are different. Traditional physical blending and modification is the largest market for twin-screw extruders, so the competition is the most intense. For Jieya, the bio-degradable plastic market was changed greatly in 2021, and a considerable part of Jieya’s orders in 2021 also came from this market.
Mr Chen explained that the reason why bio-degradable plastics are singled out from the traditional blending and modification market is that there have been many entrants in this market in the past two years, which has led to the rapid expansion of the market scale. Therefore, from traditional compounding and extrusion to processing bio-degradable plastics, is it necessary to carry out certain technical reserves? Mr Chen said frankly that it depends on how much bio-degradable plastics companies want to achieve. Just like melt blown materials in 2020, some companies have astonishing shipments, and some companies choose to take the quality to a higher level. The bio-degradable material made by special equipment must be of higher quality.
Around 2010, Jieya began to get involved in bio-degradable-related projects. During this period, we saw the ups and downs of major companies, and also witnessed the gradual growth of some companies from small to large. Most of these surviving companies are in the bio-degradable market. They started foreign trade before they became popular, and some companies even achieved a market share of about 30% in the export of Chinese vest bags.
He also talked about some distressing points in the biodegradable market: at present, the Chinese government has not clearly stipulated the definition and criteria of "bio-degradable". For example, some regions regard photo-degradable as a kind of bio-degradable. Many people oppose this. Mr Chen said that at present, most people in the Chinese market think that 'bio-degradable' is compostable and degradable, and garbage must be sorted and recycled before composting is possible.
However, Mr Chen is still very optimistic about the development of bio-degradable plastics. Bio-degradable must be the general trend of future social development, but the specific direction remains to be verified. Jieya has a layout for the main bio-degradable plastic categories, such as targeting for many PBAT projects launched in China in the past two years, we are actively discussing with customers whether we can directly use the twin-screw extruder in the polymerization stage to directly make modified materials (without extruding PBAT raw materials). Jieya has also followed up on the project of carbon dioxide production of PPC bio-degradable materials and PGA synthesized with glycolide. At present, the bio-degradable plastics market is still developing and improving. What we need to do now is to develop the corresponding twin-screw technology with the industrial chain. Based on the accumulated experience of a large number of practical applications to continuously improve the stability of the equipment.
Under the big goal of carbon neutrality, some very big changes have taken place in industries such as home appliances and automobiles. The intuitive impact is that Jieya has recently received some projects for recycling, dismantling, and regranulating waste household appliances, as well as the crushing, recycling, and regranulation of some new energy battery shells, which is also one of the important markets for Jieya in 2021. Mr Chen said that these manufacturers have multiple production lines and large projects, but they are usually new entrants, and usually require suppliers to provide them with whole-plant project planning, so they put forward higher requirements for suppliers' project experience and service capabilities.
Fluorochemicals, another key application area for which Jieya is recognized. Fluoroplastics are also known as "plastic kings". Their corrosion resistance, solvent resistance, weather resistance and temperature resistance are relatively good, so they are often included in the field of special engineering plastics. The most well-known is the PVDF used with lithium battery binder. In 2021, Jieya also undertook some projects in this field.
Mr Chen believes that the Chinese market is developing very fast, and twin-screw extruder enterprises must keep abreast of customer needs in order to gain a foothold in the market. Therefore, Jieya is also seeking new development in the upstream links. For example, the twin-screw devolatilization extrusion unit developed to meet the growing demand of downstream customers for products with low VOC and low residue; as well as corrosion resistance and wear resistance under high temperature conditions. The extrusion unit meets the production needs of special products under severe working conditions.
The success of Nanjing Jieya in the market is inseparable from the technical advantages of its twin-screw extruder equipment: its core components are all self produced, including high-torque gearboxes, extruder barrels, extruder screw elements, screen changer, die, etc. The product quality is stable and controllable, which can meet the personalized customization needs of customers, and the delivery time is flexible. In addition, Jieya stable team has also played a huge advantage. It is said that its sales, technology, management, and after-sales teams have an average of more than 10 years of experience in the industry. They have rich industry experience and are relatively clear about the pain points of various market segments. Provide complete personalized solutions, and can also undertake large and complex complete system projects.
Material delivery method
In a single-screw extruder, there is friction drag in the solids conveying section and viscous drag in the melt conveying section. The friction properties of the solid material and the viscosity of the molten material determine the conveying behavior. If some materials have poor friction properties, if the feeding problem is not solved, it will be difficult to feed the materials into the single-screw extruder. In twin-screw extruders, especially intermeshing twin-screw extruders, the conveying of materials is to some extent forward displacement transmission, and the degree of forward displacement depends on the relationship between the flight of one screw and that of the other screw. the proximity of the relative screw grooves. The screw geometry of the closely intermeshing counter-rotating extruder results in a high degree of positive displacement delivery characteristics.
Material flow velocity field
At present, the flow velocity distribution of the material in the single-screw extruder has been described quite clearly, while the flow velocity distribution of the material in the twin-screw extruder is quite complicated and difficult to describe. Many researchers just do not consider the material flow in the meshing area to analyze the flow velocity field of the material, but these analysis results are very different from the actual situation. Because the mixing characteristics and overall behavior of a twin-screw extruder are primarily determined by the leakage flow that occurs in the intermeshing zone, the flow situation in the intermeshing zone is quite complex. The complex flow spectrum of the material in the twin-screw extruder shows macroscopic advantages that the single-screw extruder cannot match, such as sufficient mixing, good heat transfer, large melting capacity, strong exhaust capacity and good temperature control of the material, etc.
Today, we loaded 2x40HQ export to Vietnam.
One is SHJ-50 twin screw extruder, the other is SHJ-72 twin screw extruders. Both extruders are used for making filler masterbatch.
Nanjing Jieya is a leading manufacturer of twin screw compounding extruders with over 20 years experience. We will offer you the top quality with best price.
We warmly welcome your inquiry.
Twin screw extruder is developed based on the single screw extruder, which has been widely used in the molding process of extruded products because of its good feeding performance, mixing and plasticizing performance, exhaust performance, and extrusion stability. So what are the advantages of a twin screw extruder? The following is a detailed introduction.
Here is the content list:
l Wear and tear
l Reduce production costs
l Increase output
l Improve labor efficiency
l High torque and high speed
Wear and tear
Since twin screw extruders are easy to open, the degree of wear of threaded elements and barrel bushings can be detected at any time, so that effective repair or replacement can be carried out. It is not necessary to find out only when there is a problem with the extruded product, which causes unnecessary waste.
Reduce production costs
When producing masterbatches on twin screw extruders, it's usually necessary to alter colors, and if a product amendment is critical, to open the open process space within several minutes, in addition to analyzing the mixing process by looking at the melt profile on the entire screw. The current common twin screw extruder needs to be cleared with a large amount of clearing material when changing colors, which is time consuming, power consuming, and a waste of raw material. The split twin screw extruder can solve this problem. When changing the color, it only takes a few minutes to quickly open the barrel for manual cleaning, so that no or less cleaning material can be used, saving costs.
Increase output
Twin screw snack extruders use side feeding technology to improve the integrity of the material and greatly increase production. The position and shape of the feed opening also have a great influence on feeding efficiency. With the same parameters, the output increases with an increase in the feed area. A rectangular cross section has a higher feed efficiency than a circular cross section for the same inlet area. The use of side by side twin screw feeds is also based on this consideration.
Improve labor efficiency
During equipment maintenance, ordinary twin screw extruders often have to remove the heating and cooling system before the screw can be withdrawn as a whole. In contrast, the split twin screw does not need to be opened by loosening a few bolts and turning the worm gearbox handle device to lift the upper half of the barrel, and then the entire barrel can be repaired. This shortens the maintenance time and reduces the labor intensity.
High torque and high speed
At present, the event trend of twin screw extruders within the world is to develop within the direction of high torsion, high speed, and low energy consumption, and also the impact of high speed is high productivity. The split twin screw extruder belongs to the current class, and its speed will reach and five hundred revolutions per minute. Therefore, its distinctive benefits in process high viscousness and warmth sensitive materials.
In the high speed, high torque core technology, asymmetric and symmetric high torque gearbox currently only Germany and Japan related manufacturers master the core technology, its speed can reach up to 1800 rpm or more, and domestic also master this core technology, such as Nanjing JlEYA extrusion company, is also currently one of the main choices of domestic high end material processing manufacturers, belongs to the domestic independent innovation national encouragement projects.
If you want to buy twin screw extruders, you can consider our cost effective products. We insist on the tenet of "quality first, customer first" and warmly welcome new and old customers to cooperate with us.
The company focuses on twin screw extruders, micro twin screw extruders, plastic extruders, parallel twin screw extruders, and other research and development and manufacturing as the core of the isotropic rotary twin screw mixing and extruding machine, the application range covers the mixing and modification of granulation, polymerization, deswelling, step molding, recycling, and other fields.
The development and application of twin screw extruders are increasingly eye-catching. Many aspects of the performance of single and twin screw extruders that dominate the extrusion industry can no longer meet the requirements of blending, filling, reinforcement, toughening and other modifications.
What is the structure of the twin screw extruder?
How does the twin screw extruder prevent material degradation?
What are the structural characteristics of the twin screw extruder?
The twin screw extruder, a unique modular screw block is designed on the screw shaft, which is broken three times within a pitch, called a mixing screw block. Corresponding to these gaps, there are three rows of mixing blocks arranged on the inner sleeve of the barrel. The pin and the screw reciprocate in the axial direction at the same time in the process of radial rotation. The twin screw extruder moves in the axial direction once every time it rotates. Due to this special movement mode and the effect of mixing and sorting screws and pins, the material is not only sheared between the mixing pins and the irregular trapezoidal mixing blocks. And it is transported back and forth. The countercurrent movement of the material adds a very useful axial mixing movement to the radial mixing. The melt is continuously cut, turned, kneaded and stretched, and the twin screw extruder regularly interrupts the simple Layered shear mixing.
Due to the simultaneous mixing in the radial and axial directions of the twin screw extruder, the mixing effect is enhanced and the best dispersion mixing and distributed mixing are ensured, so the homogenization time is short. In addition, the mutual engagement of the mixing pin and the screw block also improves the self-cleaning ability of the barrel. The twin screw extruder can ensure stable working pressure through proper screw block combination, without uncontrollable pressure and temperature fluctuations, and prevent material degradation in the barrel.
1. The main machine barrel and screw are assembled by building blocks
The barrel of the twin screw extruder is composed of multiple sets of open and closed barrels. The split barrel can be opened quickly and conveniently for easy cleaning and maintenance; the screw is composed of various mixing sleeves on the mandrel Composed of screw block and conveying screw block. The barrel and screw can be flexibly formed into an ideal form according to different types of materials and different technological requirements.
2. Unique design of gear box and swing box
The twin screw extruder realizes the axial reciprocating movement of the screw while rotating. Every time the screw rotates, it reciprocates once, and the thread is interrupted three times, thus producing a strong mixing effect. The mixing effect is in the axial direction rather than the radial direction, and occurs between the thread and the pin. All materials in the screw channel are subjected to uniform shear stress, instead of a thin layer of material being sheared.
Great products begin with the best engineering staff, and Nanjing JlEYA is ready to assist you with your technical requirements for twin screw extruder.
The single-screw extruder has a simple design and a low price, so it is widespread and demand on the market was high.
What are the application areas and benefits of single-screw extruders?
What is the development history of the single-screw extruder?
What are the main technical parameters of the single-screw extruder?
The single-screw extruder is mainly used for extruding soft and hard polyvinyl chloride, polyethylene, and other thermoplastic. It can process a variety of plastic products such as films, tubes, plates, tapes, etc., can also be used for granulation.
The single-screw extruder is characterized by advanced design, high quality, good plasticization, and low energy consumption. It uses an evolutionary drive that is characterized by low noise development, stable operation, high load capacity, and long service life.
The single-screw extruder is one of the most important devices for the processing of plastic molding parts. It uses external energy transfer and heat transfer of external heating elements to carry out the transport of plastics solids, compaction, melting, shielding, and extrusion forms.
Since the birth of the snail extruder, it has evolved from an ordinary snail extruder to a new type of snail extruder after almost a hundred years of development. Although there are many types of new single-screw extruders, the extrusion machine is the same.
The extrusion process of the traditional snail extruder is realized by heating outside the cylinder, solid and cylinder, snail friction, and melting shear force.
"friction coefficient" and "friction force", "viscosity" and "shear tension" are the main factors influencing the performance of conventional screw extruders. The extrusion process from the machine is unstable and difficult to control, especially for some heat-sensitive plastics with poor thermal stability and high viscosity.
1. Screw diameter: refers to the diameter of the outer circle of the screw, marked with D, and the unit is millimeter (mm).
2. Proportion of screw length to diameter: refers to the ratio of the length L of the working part of the screw (the length of the threaded part, i.e. the length from the center line of the feed opening to the end of the screw) and the screw diameter D, expressed by L/D.
3. Snail speed range: refers to the highest speed of the snail up to the lowest speed of the snail; n is used to represent the speed of the snail, and the unit is revolutions per minute (U/min).
4. The power of the main screw drive engine: expressed by P, the unit is kilowatt (kW).
5. Heating performance of the extruder cylinder: expressed by E is the unit kilowatt (kV).
6. The output capacity of the extruder: expressed by Q, the unit is kilogram per hour (kg/h).
7. The height of the extruder rim: refers to the distance from the center line of the screw to the ground, expressed by H, and the unit is millimeters (mm).
8. Extruder outer dimensions: refers to total length (x) total width (x) total height expressed by L x B x H, and the unit is millimeters or meters (m m or m)
9. Extruder quality: expressed in W, the unit is kilogram or tonne (kg or t).
We can see the huge role that single-screw extruders play in the production industry, and they have become indispensable components. And Nanjing JlEYA a Chinese pioneer in single-screw extruder production,has committed to providing the most suitable single-screw extruder at a reasonable price, and whatever it takes to satisfy the customer’s needs.
A plastic extruder performs all of the following processes through a barrel with a screw and auger channel. The plastic pellets enter the barrel through a hopper at one finish of the barrel and are then transferred through the screw to the opposite finish of the barrel. What are the working principle and molding principles of a plastic extruder? The following is a detailed description.
Here is the content list:
Working principle
Forming principle
Pressure and shearing, etc., convert the solid plastic into a uniform and consistent melt and send the melt to the next process. The production of the melt involves processes such as mixing additives such as masterbatches, blending resins, and re-crushing. The finished melt must be homogeneous in consistency and temperature. The pressurization must be high enough to extrude the viscous polymer.
To have sufficient pressure, the depth of the threads on the screw decreases as the distance to the hopper increases. The external heating and the internal heat generated in the plastic and the screw due to friction softens and melts the plastic. The design requirements for plastic extruders often vary from polymer to polymer and from application to application. Many options involve discharge ports, multiple loading ports, special mixing devices along the screw, cooling and heating of the melt with or without an external heat source (adiabatic plastic extruders), the relative size of the gap variation between the screw and the barrel, and the number of screws. For example, twin-screw plastic extruders allow for more thorough mixing of the melt than single-screw plastic extruders. Tandem extrusion uses the melt-extruded from the first plastic extruder as feedstock for the second plastic extruder, which is typically used to produce extruded polyethylene foam.
D L the characteristic dimensions of plastic extruders are the diameter of the screw (D) and the ratio of the length of the screw (L) to the diameter D L/D (D) (L/D. Plastic extruders usually consist of at least three segments. The first section, near the L/D) filling hopper, is the filling section. Its function is to allow the material to enter the plastic extruder at a relatively smooth rate. In general, this section will be kept at a relatively low temperature to avoid clogging the charging channels. The second section is the compression section, where the melt is formed and the pressure is increased. The transition from the charging section to the compression section can be abrupt or gradual (gentle). The last half, the metering section, is adjacent to the plastic extruder outlet and its main operate is that the uniformity of the fabric flowing out of the plastic extruder. In this section, the material should have sufficient residence time to ensure uniformity of composition and temperature.
At the end of the barrel, the plastic melt leaves the plastic extruder through a head that is designed in an ideal shape for the extruded melt stream to pass through.
Another important part is the drive mechanism of the plastic extruder. It controls the rotational speed of the screw, which determines the output of the plastic extruder. The power required is determined by the viscosity (flow resistance) of the polymer. The viscosity of the polymer depends on the temperature and flow rate and decreases with increasing temperature and shear. Plastic extruders are equipped with screens that keep impurities out of the screen. To avoid downtime, the screens should be able to be changed automatically. This is especially important when processing resin with impurities, such as recycled material. The extruder's screw is divided into feeding section, plasticizing, melting section, temperature according to the process parameters of the plastic particles, the model according to the diameter of the screw 20, 36, 52, 65, 75, 95, 120, 135. Plastic particles heated by the movement of the screw to change the original state, there are many types, depending on the specific application. The capacity of the frequency conversion is proportional to the diameter of the screw and then adjusted according to the different raw materials.
The extrusion method of plastic extruders generally refers to the melting of plastic at a high temperature of about 200°C. The melted plastic is then passed through a die to form the desired shape. Extrusion molding requires a deep understanding of the characteristics of plastics and extensive experience in mold design and is a technically demanding molding method.
Extrusion molding is a method of a continuous flow of material through a die by heating and pressurizing in an extruder, also known as "extrusion molding". Compared with other molding methods, it has the advantages of high efficiency and low unit cost.
Extrusion is mainly used for molding thermoplastics, but it can also be used for some thermosets. Extruded products are continuous profiles, such as tubes, rods, wires, sheets, films, wire, and cable cladding, etc. In addition, it can also be used for mixing, plasticizing and granulating, coloring, blending, etc. plastics.
The extruded products can be called "profiles", which are also called "profiles" because of their irregular cross-sectional shape.