








The extrusion technology used by the single screw extruder is making waves in the food production industry. We know that single screw extruder can mass produce enterprise products of various shapes and textures. It allows a seamless and continuous operation process, which means that this means lower costs and higher production and sales.
What are the reasons and solutions for the poor discharge or blockage of the single screw extruder head?
What is the importance of single screw extruder temperature control?
What is the importance of single screw extruder speed control?
1. Reasons: (1) A certain section of the heater does not work, and the material is poorly plasticized. (2) The operating temperature is set too low, or the molecular weight distribution of the plastic is wide and unstable. (3) There may be foreign objects in the single screw extruder that are not easy to melt.
2. Treatment method: (1) Check the heater and replace it if necessary. (2) Verify the set temperature of each section, negotiate with the technician if necessary, and increase the temperature set value. (3) Clean and check the extrusion system and head of the single screw extruder.
Temperature control refers to the temperature of the single screw extruder during plastic extrusion, including the temperature control of the barrel, die and transition body. These temperature controls are related to the viscosity of the material, the sensitivity to temperature, and the aggregation state of the polymer. In general, the temperature of the die head and transition body of single screw extruder is low for medium and low viscosity materials, and the temperature of die head and transition body for high viscosity materials is high, and the fluidity is good.
Speed control means that for single screw extrude processing, if the screw speed increases, the shear rate increases. Thermoplastic melts are mostly non-Newtonian pseudoplastic fluids, and their viscosity decreases with the increase of shear rate, and fluidity Increasing the extrusion output also increases. However, if the shear rate is too large, the melt viscosity is too low, which will cause difficulties in the production and operation of single screw extrude. At the same time, the low-viscosity melt will flow backwards under the action of the screw back pressure, and the leakage flow will increase significantly, which will affect the output to a certain extent. , Again, the screw may even slip at high speeds, so the screw speed should be controlled within a certain range. In addition, in the production process of single screw extrude, the screw speed should be kept as stable as possible to avoid fast and slow. Otherwise, it will cause uneven discharge due to excessive changes in the melt viscosity of the material, which will affect normal production.
Nanjing JlEYA is a single screw extruder manufacturer established for more than five years. We work with customers from design to completion to ensure that all technical requirements are met.
The main system of the plastic extruder is the extrusion system, which includes screw, barrel, hopper, head, and die. The plastic is plasticized into a uniform melt by the extrusion system and is continuously extruded from the head by the screw under the pressure established in the process. The following are details about the plastic extruder extrusion system introduction.
Here is the content list:
Screw
Barrel
Hopper
Head and mold.
The screw is the most important part of the extruder, which is directly related to the application range and productivity of the extruder and is made of high-strength and corrosion-resistant alloy steel.
The barrel is a metal cylinder, generally made of heat-resistant, high-pressure strength, strong wear-resistant, corrosion-resistant alloy steel or composite steel tube lined with alloy steel. The barrel and the screw cooperate to realize the crushing, softening, melting, plasticizing, exhausting, and compacting of the plastic, and to continuously and evenly deliver the rubber to the molding system. Generally, the length of the barrel is 15-30 times its diameter, so that the plastic is fully heated and fully plasticized as a principle.
The bottom of the hopper is equipped with a cut-off device to adjust and cut off the material flow, and the side of the hopper is equipped with a sight hole and a calibrated measuring device.
The head is composed of alloy steel inner sleeve and carbon steel outer sleeve, the head is equipped with a molding mold, the role of the head is to transform the rotational movement of the plastic melt into a parallel linear motion, evenly and smoothly into the mold sleeve, and give the plastic to the necessary molding pressure. The plastic is plasticized and compacted in the barrel and flows through the neck of the head through a certain flow path through the porous filter plate into the forming mold of the head. The mold core and mold sleeve are properly matched to form an annular gap with decreasing cross-section so that the plastic melt forms a continuous dense tubular cladding layer around the core line. To ensure that the plastic flow channel in the head is reasonable and to eliminate the dead angle of the accumulated plastic, there is often a diversion sleeve placed, and to eliminate the pressure fluctuation of plastic extrusion, there is also a pressure equalization ring set. The head is also equipped with a die correction and adjustment device to facilitate the adjustment and correction of the concentricity of the die core and die sleeve.
The extruder head is divided into an angled head (120o angle) and a right angle head according to the angle between the head material flow direction and the screw centerline. The shell of the head is fixed to the body with bolts, the die inside the head has a die core sitting and is fixed to the head inlet port with a nut, the front of the die core seat is equipped with a die core, the die core and the center of the die core seat has a hole for passing the core line, the front of the head is equipped with an even pressure ring for equalizing the pressure, the extrusion package forming part is composed of die sleeve seat and die sleeve, the position of the die sleeve can be adjusted by bolts through the support to adjust the die sleeve to the die core The position of the die sleeve can be adjusted by bolts through support to adjust the relative position of the die sleeve to the die core, which is convenient to adjust the uniformity of the thickness of the extruded layer.
If you want to buy a plastic extruder or want to know more, you can visit our official website. Our website is https://www.njjyextrusion.com/
With the development of modern industry, the underwater pelletizing machine has become an important production equipment used in all aspects of production.
What is the working principle of the underwater pelletizing machine?
What is the operating procedure of the underwater pelletizing machine?
What are the reasons why people choose underwater pelletizing machine?
The material using the underwater pelletizing machine will pass through the feeding port, and under the action of the rotating screw, it will be rolled into a dough and roll forward along the screw groove. Due to the shear, compression and agitation of the screw, the material will be further mixed and plasticized. , The temperature and pressure gradually increase, showing a state of viscous flow, and passing through the machine head with a certain pressure and temperature, and finally a product of the desired shape is obtained.
(1) Check the rotation direction of the impeller of the underwater pelletizing machine. From the feed inlet, the impeller should turn counterclockwise, otherwise the motor connection should be adjusted.
(2) The starting sequence of the underwater pelletizing machine and the material conveying equipment is as follows:
Discharge belt conveyor→PL vertical impact crusher→feeding belt conveyor
The crusher must be started without load, and the material can only be fed after the crusher is running normally.
(3) The feed size is strictly in accordance with the feed size specified by the various models. It is forbidden to enter the underwater pelletizing machine with the size of the material larger than the specified size, otherwise it will cause the impeller imbalance and excessive wear of the impeller, and even block the impeller flow path and The central feed pipe prevents the crusher from working normally. When a large piece of material is found, it should be removed in time.
(4) When the discharge belt conveyor stops running, the feeding should be stopped immediately, so the discharge belt conveyor should be interlocked with the feeding system to open and stop. Otherwise, the impeller will be crushed and the motor will be burnt.
(5) The feeding of the underwater pelletizing machine should be uniform and continuous.
(6) During the operation of the underwater pelletizing machine, there must be no violent vibration or abnormal noise, otherwise, it should be stopped immediately for inspection, and the machine can only be driven in order after the fault is removed.
(7) The observation door should be sealed tightly during the working process of the underwater pelletizing machine.
The difference between the underwater pelletizing machine and other similar products is that it has a steady stream of water flowing through the mold surface, and it is in direct contact with the mold surface. The size of the pelletizing chamber is just enough to allow the pelletizing knife to rotate freely across the die surface without restricting the temperature of the water flow. The molten polymer has been extruded from the die, and the rotating knife cuts the pellets. And then the pellets are taken out of the pelletizing chamber by the temperature-regulated water and enter the centrifugal dryer. In the dryer of the underwater pelletizing machine, the water will be drained back to the storage tank, cooled and recycled; the pellets pass through the centrifugal dryer to remove the water.
This is how we see the irreplaceable role of underwater pelletizing machine in our daily lives and industrial production. Nanjing JlEYA, the pioneer of underwater pelletizing machine producing company in China, knows that every application is special. You can go and get more information about them
When the single screw extruder is in the extrusion molding process, its extruder screw is divided into 3 sections: feeding section (feeding section), melting section (compression section), metering section (homogenization section), these three sections Correspondingly, three functional areas are composed of materials: solid conveying area, material plasticizing area, and melt conveying area. Each area has different temperature requirements, and specific problems should be analyzed in detail. The temperature of the single screw extruder will be briefly introduced below.
What is the general temperature of the solid conveying zone in a single screw extruder?
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
What is the general temperature of the melt conveying zone in a single screw extruder?
What is the general temperature of the solid conveying zone in a single screw extruder?
The temperature of the barrel in the solid conveying zone of the single screw extruder is generally controlled at 100~1400C. If the feeding temperature is too low, the solid conveying zone will be extended, reducing the length of the plasticizing zone and the melt conveying zone, which will cause poor plasticization of the single screw extruder product and affect product quality.
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
The temperature of the material plasticizing zone in the single screw extruder is controlled at 170~1900C. Controlling the vacuum degree of this section is an important process index. If the vacuum degree is low, it will affect the exhaust effect, resulting in bubbles in the pipe, and seriously reducing the mechanical properties of the pipe. In order to make the gas inside the material easily escape, the plasticization degree of the material in this section should be controlled not to be too high, and the exhaust pipe of the single screw extruder should be cleaned frequently to avoid blockage. The vacuum degree of the barrel is generally 0.08~0.09MPa.
What is the general temperature of the melt conveying zone in a single screw extruder?
The temperature of the melt conveying zone in the single screw extruder should be slightly lower, generally 160~1800C. Increasing the screw speed in this section, reducing the head resistance and increasing the pressure in the plasticizing zone are all conducive to the improvement of the conveying rate. For heat-sensitive plastics such as PVC, the residence time should not be too long in this section. The screw speed is generally 20 ~30r/min. The head of the single screw extruder is an important part of extruded product molding. Its function is to generate a higher melt pressure and make the melt shape into a desired shape. The process parameters of each part of the single screw extruder are: die connector temperature 1650C, die temperature 1700C, 1700C, 1650C, 1800C, 1900C.
This is some information related to the use of single screw extruders. The use of single screw extruders is also closely related to the quality of its products. If you need more information, please contact Nanjing JlEYA.
The single screw extruder is mainly composed of 3 parts: extrusion system, transmission system, and heating and cooling system. The following is a detailed introduction to the basic structure of the single screw extruder.
Here is the content list:
Extrusion system
Transmission system
Heating and cooling system
The main role of the extrusion system of the single-screw extruder is to melt and plasticize the polymer material to form a uniform melt, to realize the transformation from the glassy state to the viscous flow state. And in this process to establish a certain pressure, by the screw continuous extrusion delivery to the head die. Thus, the extrusion system plays an important role in the molding quality and output of the extrusion process.
The extrusion system mainly includes the feeding device, screw, and barrel, which is the most critical part of the extruder, of which the screw is the heart of the extruder, the material through the rotation of the screw in order to move in the barrel and get pressurized and part of the heat.
The drive system of a single screw extruder is usually composed of a motor, reducer, and bearing, whose role is to drive the screw and supply the torque and torque required by the screw in the extrusion process. During the extrusion process, the screw speed is required to be stable and does not change with the change of screw load to ensure the uniform quality of the product. However, in different situations, the screw is required to be able to achieve variable speed in order to achieve a machine that can adapt to the requirements of extruding different materials or products of different shapes. In most extruders, the change of screw speed is achieved by adjusting the motor speed. The drive system of the single-screw extruder is also equipped with a good lubrication system and a device for rapid braking.
The heating and cooling system of a single screw extruder consist of a heating device and cooling device, which are necessary for the extrusion process to be carried out smoothly. The heating and cooling devices must ensure that the polymer materials are melted and plasticized and the temperature conditions during the molding process meet the process requirements.
The cooling device is generally set up in the extruder barrel, screw and hopper bottom, and other parts. Barrel cooling can be water-cooled or air-cooled, air-cooled is generally used for small and medium-sized single-screw extruders; large single-screw extruders are mostly water-cooled or a combination of the two forms. The cooling device at the bottom of the hopper is mainly to strengthen the solid material conveying effect, to prevent the material particles from becoming sticky due to the heating, blocking the material mouth and thus affecting the feeding. Generally, for extruders with a screw diameter of 90mm or more and high-speed extruders, a cooling device must be installed at the bottom of the hopper.
Our company focuses on twin-screw extruders, micro twin-screw extruders, plastic extruders, parallel twin-screw extruders, and other kinds of research and development and manufacturing as the core of the isotropic rotary twin-screw compounding extruder. If you still want to know more, you can consult our company.
2022 CIM: Compounding Intelligent Manufacturing Conference is coming.
Nanjing Jieya team warmly welcome your visiting.
Booth no.: E10
Date: 2022.9.14-16
Address: Suzhou, China
See you~
Degradable plastics refer to a class of plastics whose various properties can meet the requirements of use, remain unchanged during the shelf life, and can be degraded into environmentally harmless substances under natural environment conditions after use. Therefore, it is also called environmentally degradable plastic.
There are a variety of new plastics: photodegradable plastics, biodegradable plastics, light/oxidative/biodegradable plastics, carbon dioxide-based biodegradable plastics, thermoplastic starch resin degradable plastics.
There are two main areas for the use of degradable plastics: one is the area where ordinary plastics were originally used. In these areas, the difficulty of collecting used or post-consumer plastic products will cause harm to the environment, such as agricultural mulch and single-use plastic packaging, and the second is areas where plastics are used instead of other materials. The use of degradable plastics in these areas can bring convenience, such as ball tacks for golf courses, and seedling fixing materials for tropical rainforest afforestation.
Specific applications are:
1.Agriculture, forestry and fishery, plastic film, water-retaining materials, seedling pots, seedbeds, rope nets, slow-release materials for pesticides and agricultural fertilizers.
2.Packaging industry, shopping bags, garbage bags, compost bags, disposable lunch boxes, instant noodle bowls, buffer packaging materials.
3.Sporting goods, golf tacks and tees
4.Hygiene products, women's hygiene products, baby diapers, medical mattresses, disposable haircuts.
5.Medical materials, bandages, clips, small sticks for cotton swabs, gloves, drug release materials, and surgical sutures and fracture fixation materials.
Nanjing Jieya also manufactures twin screw compounding extruder for bio-degradable material. We warmly welcome your inquiry.
The plastic extruder is a common plastic machinery equipment, in the process of the daily operation of the extruder, the extruder will have a variety of failures, affecting the normal production of plastic machinery, the following we will analyze the extruder failure.
Here is the content list:
Unstable host current
The main motor can not start
The head is not discharged smoothly or blocked
The main electric starting current is too high
The main motor makes an abnormal sound
1. Production reasons.
(1) Uneven feeding.
(2) The main motor bearing of the plastic extruder is damaged or poorly lubricated.
(3) A section of the heater is out of order and does not heat up.
(4) The screw adjustment pad is not correct, or the phase is not correct, and the component interferes.
2. Treatment methods.
(1) Check the feeder, troubleshooting.
(2) Overhaul the main motor of the plastic extruder, replace the bearings if necessary.
(3) Check whether each heater is working properly, replace the heater if necessary.
(4) Check the adjustment pad, pull out the screw to check whether there is interference with the screw.
1. Causes.
(1) There is a mistake in the start-up procedure of the plastic extruder.
(2) The main motor thread has a problem, whether the fuse is burned ring.
(3) The main motor-related chain device to function
2. Treatment methods.
(1) Check the program, reboot the machine in the correct boot sequence.
(2) Check the main motor circuit.
(3) Check whether the lube oil pump of the plastic extruder is started and check the status of the chain device associated with the main motor. The oil pump is not on and the motor cannot be turned on.
(4) The inverter induction power has not been discharged. Turn off the main power and wait for 5 minutes before starting again.
(5) Check whether the emergency button is reset.
1. Causes.
(1) A section of the heater does not work, and the material is not plasticized well.
(2) The operating temperature setting is low, or the molecular weight distribution of plastic is wide and unstable.
(3) There may be foreign substances that do not melt easily.
2. Treatment methods.
(1) Check the heater of the plastic extruder and replace it if necessary.
(2) Verify the set temperature of each section, and if necessary, consult with the technician to increase the temperature setting.
(3) Clean and check the extrusion system and the head.
1. Causes.
(1) Insufficient heating time and high torque.
(2) A section of the heater does not work.
2. Treatment methods.
(1) Apply hand pan machine when starting, if not easy, extend the heating time or check whether each section heater is working properly.
1. Produced by.
(1) The main motor bearing of the plastic extruder is damaged.
(2) The main motor silicon controlled rectifier line in silicon controlled damage.
2. Treatment methods.
(1) Replace the main motor bearings.
(2) Check the silicon-controlled rectifier circuit, if necessary, replace the silicon-controlled components.
Our company's website is https://www.njjyextrusion.com/. If you still have questions, you can contact us on the official website.