








Nanjing Team sincerely invite you to attend The 15th China Chongqing Rubber, Plastics Industry Exhibition.
Our booth no.: S2544
Time: May 27-30, 2021
Address: Chongqing International Expo Center
Wish to meet you at there ;)
We hereby invite to you visit our booth in The 5th China International Plastics Exhibition.
Jieya booth: 7-200 in hall 7
Date: 2023.2.25-27
Address: Nanjing International Expo Center
See you at the exhibition!
The screw can be said to be the heart of the injection molding machine. The quality of the screw determines the quality of the product. The plasticizing screw of the engineering plastic twin screw extruder has the functions of conveying, melting, mixing, compression, metering and exhausting. It plays an important role in the quality of plasticization and is a key factor affecting the quality of plasticization.
What is the difference between engineering plastic twin screw extruder and single screw extruder?
What are the characteristics of engineering plastic twin screw extruder?
What are the structural principles of engineering plastic twin screw extruder?
1. Price: single screw extruder has simple structure and low price; Engineering plastic twin screen expander is complex and expensive
2. Plasticizing capacity: single screw extruder is suitable for plasticizing and extruding polymers and granular materials. The shear degradation of polymer is small, but the residence time of material in extruder is long; The engineering plastic twin screw extruder has good mixing and plasticizing ability, and the residence time of materials in the extruder is short, which is suitable for powder processing.
3. In terms of processing capacity and energy consumption: the engineering plastic twin screw extruder has large output, fast extrusion speed and low energy consumption per unit output, while the single screw extruder is poor.
4. Operability: the single screw extruder is easy to operate and the process control is simple; The operation of engineering plastic twin screen expander is relatively complex and the process control requirements are high.
1. engineering plastic twin screw extruder is divided into parallel and conical according to the relative position of the two axes;
2. engineering plastic twin screw extruder is divided into meshing type and non-meshing type according to the two screw meshing procedures;
3. engineering plastic twin screw extruder is divided into the same direction and the opposite direction according to the rotation direction of the two screws, and there are inward and outward points in the opposite direction;
4. engineering plastic twin screw extruder is divided into high speed and low speed according to the screw rotation speed;
5. engineering plastic twin screw extruder is divided into whole and combination according to the structure of screw and barrel.
For the basic mechanism of the engineering plastic twin screw extruder process, in simple terms, a screw rotates in the barrel and pushes the plastic forward. The screw structure is an inclined surface or slope wound on the center layer, the purpose of which is to increase the pressure in order to overcome the greater resistance. As far as the engineering plastic twin screw extruder is concerned, there are three kinds of resistance that need to be overcome during work: one is friction, which includes the friction of solid particles (feeding) against the barrel wall and the first few revolutions of the screw (feeding zone). There are two kinds of mutual friction forces; the second is the adhesion of the melt on the cylinder wall; the third is the internal logistics resistance of the melt when it is pushed forward.
Nanjing JlEYA has focused on the development and production of engineering plastic twin screw extruders for several years. And it commits to provide perfect service for every customer from all over the world.
Nanjing JIEYA hereby sincerely invited you to attend 2021 China (Hainan) Degradation Exhibition.
Our booth no.: B06
Time: June 23-25
Add: Hainan International Convention and Exhibition Center
We warmly welcome your coming and look forward to cooperate with you ;)
Today, we loaded 2x40HQ export to Vietnam.
One is SHJ-50 twin screw extruder, the other is SHJ-72 twin screw extruders. Both extruders are used for making filler masterbatch.
Nanjing Jieya is a leading manufacturer of twin screw compounding extruders with over 20 years experience. We will offer you the top quality with best price.
We warmly welcome your inquiry.
A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
The single screw extruder is mainly composed of 3 parts: extrusion system, transmission system, and heating and cooling system. The following is a detailed introduction to the basic structure of the single screw extruder.
Here is the content list:
Extrusion system
Transmission system
Heating and cooling system
The main role of the extrusion system of the single-screw extruder is to melt and plasticize the polymer material to form a uniform melt, to realize the transformation from the glassy state to the viscous flow state. And in this process to establish a certain pressure, by the screw continuous extrusion delivery to the head die. Thus, the extrusion system plays an important role in the molding quality and output of the extrusion process.
The extrusion system mainly includes the feeding device, screw, and barrel, which is the most critical part of the extruder, of which the screw is the heart of the extruder, the material through the rotation of the screw in order to move in the barrel and get pressurized and part of the heat.
The drive system of a single screw extruder is usually composed of a motor, reducer, and bearing, whose role is to drive the screw and supply the torque and torque required by the screw in the extrusion process. During the extrusion process, the screw speed is required to be stable and does not change with the change of screw load to ensure the uniform quality of the product. However, in different situations, the screw is required to be able to achieve variable speed in order to achieve a machine that can adapt to the requirements of extruding different materials or products of different shapes. In most extruders, the change of screw speed is achieved by adjusting the motor speed. The drive system of the single-screw extruder is also equipped with a good lubrication system and a device for rapid braking.
The heating and cooling system of a single screw extruder consist of a heating device and cooling device, which are necessary for the extrusion process to be carried out smoothly. The heating and cooling devices must ensure that the polymer materials are melted and plasticized and the temperature conditions during the molding process meet the process requirements.
The cooling device is generally set up in the extruder barrel, screw and hopper bottom, and other parts. Barrel cooling can be water-cooled or air-cooled, air-cooled is generally used for small and medium-sized single-screw extruders; large single-screw extruders are mostly water-cooled or a combination of the two forms. The cooling device at the bottom of the hopper is mainly to strengthen the solid material conveying effect, to prevent the material particles from becoming sticky due to the heating, blocking the material mouth and thus affecting the feeding. Generally, for extruders with a screw diameter of 90mm or more and high-speed extruders, a cooling device must be installed at the bottom of the hopper.
Our company focuses on twin-screw extruders, micro twin-screw extruders, plastic extruders, parallel twin-screw extruders, and other kinds of research and development and manufacturing as the core of the isotropic rotary twin-screw compounding extruder. If you still want to know more, you can consult our company.
A plastic extruder performs all of the following processes through a barrel with a screw and auger channel. The plastic pellets enter the barrel through a hopper at one finish of the barrel and are then transferred through the screw to the opposite finish of the barrel. What are the working principle and molding principles of a plastic extruder? The following is a detailed description.
Here is the content list:
Working principle
Forming principle
Pressure and shearing, etc., convert the solid plastic into a uniform and consistent melt and send the melt to the next process. The production of the melt involves processes such as mixing additives such as masterbatches, blending resins, and re-crushing. The finished melt must be homogeneous in consistency and temperature. The pressurization must be high enough to extrude the viscous polymer.
To have sufficient pressure, the depth of the threads on the screw decreases as the distance to the hopper increases. The external heating and the internal heat generated in the plastic and the screw due to friction softens and melts the plastic. The design requirements for plastic extruders often vary from polymer to polymer and from application to application. Many options involve discharge ports, multiple loading ports, special mixing devices along the screw, cooling and heating of the melt with or without an external heat source (adiabatic plastic extruders), the relative size of the gap variation between the screw and the barrel, and the number of screws. For example, twin-screw plastic extruders allow for more thorough mixing of the melt than single-screw plastic extruders. Tandem extrusion uses the melt-extruded from the first plastic extruder as feedstock for the second plastic extruder, which is typically used to produce extruded polyethylene foam.
D L the characteristic dimensions of plastic extruders are the diameter of the screw (D) and the ratio of the length of the screw (L) to the diameter D L/D (D) (L/D. Plastic extruders usually consist of at least three segments. The first section, near the L/D) filling hopper, is the filling section. Its function is to allow the material to enter the plastic extruder at a relatively smooth rate. In general, this section will be kept at a relatively low temperature to avoid clogging the charging channels. The second section is the compression section, where the melt is formed and the pressure is increased. The transition from the charging section to the compression section can be abrupt or gradual (gentle). The last half, the metering section, is adjacent to the plastic extruder outlet and its main operate is that the uniformity of the fabric flowing out of the plastic extruder. In this section, the material should have sufficient residence time to ensure uniformity of composition and temperature.
At the end of the barrel, the plastic melt leaves the plastic extruder through a head that is designed in an ideal shape for the extruded melt stream to pass through.
Another important part is the drive mechanism of the plastic extruder. It controls the rotational speed of the screw, which determines the output of the plastic extruder. The power required is determined by the viscosity (flow resistance) of the polymer. The viscosity of the polymer depends on the temperature and flow rate and decreases with increasing temperature and shear. Plastic extruders are equipped with screens that keep impurities out of the screen. To avoid downtime, the screens should be able to be changed automatically. This is especially important when processing resin with impurities, such as recycled material. The extruder's screw is divided into feeding section, plasticizing, melting section, temperature according to the process parameters of the plastic particles, the model according to the diameter of the screw 20, 36, 52, 65, 75, 95, 120, 135. Plastic particles heated by the movement of the screw to change the original state, there are many types, depending on the specific application. The capacity of the frequency conversion is proportional to the diameter of the screw and then adjusted according to the different raw materials.
The extrusion method of plastic extruders generally refers to the melting of plastic at a high temperature of about 200°C. The melted plastic is then passed through a die to form the desired shape. Extrusion molding requires a deep understanding of the characteristics of plastics and extensive experience in mold design and is a technically demanding molding method.
Extrusion molding is a method of a continuous flow of material through a die by heating and pressurizing in an extruder, also known as "extrusion molding". Compared with other molding methods, it has the advantages of high efficiency and low unit cost.
Extrusion is mainly used for molding thermoplastics, but it can also be used for some thermosets. Extruded products are continuous profiles, such as tubes, rods, wires, sheets, films, wire, and cable cladding, etc. In addition, it can also be used for mixing, plasticizing and granulating, coloring, blending, etc. plastics.
The extruded products can be called "profiles", which are also called "profiles" because of their irregular cross-sectional shape.