








Nanjing Jieya Extrusion Equipment Co., Ltd. (referred to as "Jieya") was established in 2004. It has the manufacturing capacity of various types of production lines with an annual production and sales of more than 350 sets. Its comprehensive capability ranks in the forefront of the Nanjing twin screw extruders industry. The company focuses on the R&D and manufacturing of various production lines centered on co-rotating twin-screw extruders and single-screw extruders. The product applications cover compounding, modified granulation, polymerization, devolatilization, one-step molding, and recyclable resources, etc.
Project Director Mr Chen introduced that every industry has competition, but specific to a certain market segment, the competitors involved are different. Traditional physical blending and modification is the largest market for twin-screw extruders, so the competition is the most intense. For Jieya, the bio-degradable plastic market was changed greatly in 2021, and a considerable part of Jieya’s orders in 2021 also came from this market.
Mr Chen explained that the reason why bio-degradable plastics are singled out from the traditional blending and modification market is that there have been many entrants in this market in the past two years, which has led to the rapid expansion of the market scale. Therefore, from traditional compounding and extrusion to processing bio-degradable plastics, is it necessary to carry out certain technical reserves? Mr Chen said frankly that it depends on how much bio-degradable plastics companies want to achieve. Just like melt blown materials in 2020, some companies have astonishing shipments, and some companies choose to take the quality to a higher level. The bio-degradable material made by special equipment must be of higher quality.
Around 2010, Jieya began to get involved in bio-degradable-related projects. During this period, we saw the ups and downs of major companies, and also witnessed the gradual growth of some companies from small to large. Most of these surviving companies are in the bio-degradable market. They started foreign trade before they became popular, and some companies even achieved a market share of about 30% in the export of Chinese vest bags.
He also talked about some distressing points in the biodegradable market: at present, the Chinese government has not clearly stipulated the definition and criteria of "bio-degradable". For example, some regions regard photo-degradable as a kind of bio-degradable. Many people oppose this. Mr Chen said that at present, most people in the Chinese market think that 'bio-degradable' is compostable and degradable, and garbage must be sorted and recycled before composting is possible.
However, Mr Chen is still very optimistic about the development of bio-degradable plastics. Bio-degradable must be the general trend of future social development, but the specific direction remains to be verified. Jieya has a layout for the main bio-degradable plastic categories, such as targeting for many PBAT projects launched in China in the past two years, we are actively discussing with customers whether we can directly use the twin-screw extruder in the polymerization stage to directly make modified materials (without extruding PBAT raw materials). Jieya has also followed up on the project of carbon dioxide production of PPC bio-degradable materials and PGA synthesized with glycolide. At present, the bio-degradable plastics market is still developing and improving. What we need to do now is to develop the corresponding twin-screw technology with the industrial chain. Based on the accumulated experience of a large number of practical applications to continuously improve the stability of the equipment.
Under the big goal of carbon neutrality, some very big changes have taken place in industries such as home appliances and automobiles. The intuitive impact is that Jieya has recently received some projects for recycling, dismantling, and regranulating waste household appliances, as well as the crushing, recycling, and regranulation of some new energy battery shells, which is also one of the important markets for Jieya in 2021. Mr Chen said that these manufacturers have multiple production lines and large projects, but they are usually new entrants, and usually require suppliers to provide them with whole-plant project planning, so they put forward higher requirements for suppliers' project experience and service capabilities.
Fluorochemicals, another key application area for which Jieya is recognized. Fluoroplastics are also known as "plastic kings". Their corrosion resistance, solvent resistance, weather resistance and temperature resistance are relatively good, so they are often included in the field of special engineering plastics. The most well-known is the PVDF used with lithium battery binder. In 2021, Jieya also undertook some projects in this field.
Mr Chen believes that the Chinese market is developing very fast, and twin-screw extruder enterprises must keep abreast of customer needs in order to gain a foothold in the market. Therefore, Jieya is also seeking new development in the upstream links. For example, the twin-screw devolatilization extrusion unit developed to meet the growing demand of downstream customers for products with low VOC and low residue; as well as corrosion resistance and wear resistance under high temperature conditions. The extrusion unit meets the production needs of special products under severe working conditions.
The success of Nanjing Jieya in the market is inseparable from the technical advantages of its twin-screw extruder equipment: its core components are all self produced, including high-torque gearboxes, extruder barrels, extruder screw elements, screen changer, die, etc. The product quality is stable and controllable, which can meet the personalized customization needs of customers, and the delivery time is flexible. In addition, Jieya stable team has also played a huge advantage. It is said that its sales, technology, management, and after-sales teams have an average of more than 10 years of experience in the industry. They have rich industry experience and are relatively clear about the pain points of various market segments. Provide complete personalized solutions, and can also undertake large and complex complete system projects.
Nanjing JIEYA attend Chinaplas 2021 held in Shenzhen. We sincerely welcome your visiting.
Our booth no.: 7Q25
Time: April 13-16, 2021
Address: Shenzhen World Exhibition Center
Look forward to meet you at there.
![]() | ![]() |
Material delivery method
In a single-screw extruder, there is friction drag in the solids conveying section and viscous drag in the melt conveying section. The friction properties of the solid material and the viscosity of the molten material determine the conveying behavior. If some materials have poor friction properties, if the feeding problem is not solved, it will be difficult to feed the materials into the single-screw extruder. In twin-screw extruders, especially intermeshing twin-screw extruders, the conveying of materials is to some extent forward displacement transmission, and the degree of forward displacement depends on the relationship between the flight of one screw and that of the other screw. the proximity of the relative screw grooves. The screw geometry of the closely intermeshing counter-rotating extruder results in a high degree of positive displacement delivery characteristics.
Material flow velocity field
At present, the flow velocity distribution of the material in the single-screw extruder has been described quite clearly, while the flow velocity distribution of the material in the twin-screw extruder is quite complicated and difficult to describe. Many researchers just do not consider the material flow in the meshing area to analyze the flow velocity field of the material, but these analysis results are very different from the actual situation. Because the mixing characteristics and overall behavior of a twin-screw extruder are primarily determined by the leakage flow that occurs in the intermeshing zone, the flow situation in the intermeshing zone is quite complex. The complex flow spectrum of the material in the twin-screw extruder shows macroscopic advantages that the single-screw extruder cannot match, such as sufficient mixing, good heat transfer, large melting capacity, strong exhaust capacity and good temperature control of the material, etc.
The screw can be said to be the heart of the injection molding machine. The quality of the screw determines the quality of the product. The plasticizing screw of the engineering plastic twin screw extruder has the functions of conveying, melting, mixing, compression, metering and exhausting. It plays an important role in the quality of plasticization and is a key factor affecting the quality of plasticization.
What is the difference between engineering plastic twin screw extruder and single screw extruder?
What are the characteristics of engineering plastic twin screw extruder?
What are the structural principles of engineering plastic twin screw extruder?
1. Price: single screw extruder has simple structure and low price; Engineering plastic twin screen expander is complex and expensive
2. Plasticizing capacity: single screw extruder is suitable for plasticizing and extruding polymers and granular materials. The shear degradation of polymer is small, but the residence time of material in extruder is long; The engineering plastic twin screw extruder has good mixing and plasticizing ability, and the residence time of materials in the extruder is short, which is suitable for powder processing.
3. In terms of processing capacity and energy consumption: the engineering plastic twin screw extruder has large output, fast extrusion speed and low energy consumption per unit output, while the single screw extruder is poor.
4. Operability: the single screw extruder is easy to operate and the process control is simple; The operation of engineering plastic twin screen expander is relatively complex and the process control requirements are high.
1. engineering plastic twin screw extruder is divided into parallel and conical according to the relative position of the two axes;
2. engineering plastic twin screw extruder is divided into meshing type and non-meshing type according to the two screw meshing procedures;
3. engineering plastic twin screw extruder is divided into the same direction and the opposite direction according to the rotation direction of the two screws, and there are inward and outward points in the opposite direction;
4. engineering plastic twin screw extruder is divided into high speed and low speed according to the screw rotation speed;
5. engineering plastic twin screw extruder is divided into whole and combination according to the structure of screw and barrel.
For the basic mechanism of the engineering plastic twin screw extruder process, in simple terms, a screw rotates in the barrel and pushes the plastic forward. The screw structure is an inclined surface or slope wound on the center layer, the purpose of which is to increase the pressure in order to overcome the greater resistance. As far as the engineering plastic twin screw extruder is concerned, there are three kinds of resistance that need to be overcome during work: one is friction, which includes the friction of solid particles (feeding) against the barrel wall and the first few revolutions of the screw (feeding zone). There are two kinds of mutual friction forces; the second is the adhesion of the melt on the cylinder wall; the third is the internal logistics resistance of the melt when it is pushed forward.
Nanjing JlEYA has focused on the development and production of engineering plastic twin screw extruders for several years. And it commits to provide perfect service for every customer from all over the world.
underwater pelletizing machine plays an irreplaceable role in the current industrial production process. Only when the underwater pelletizing machine is used correctly can the greatest effect be achieved.
What problems should be paid attention to when using underwater pelletizing machine?
What is the cause of the friction clutch failure of the underwater pelletizing machine and its solution?
How can the underwater pelletizing machine make the pellets cut out by pelletizing have no pores?
1. Pay attention to the temperature change of the underwater pelletizing machine at any time. When touching the sliver with clean hands, the temperature should be raised immediately. Until the sliver touches your hand, it is normal.
2. When the bearing part of the reducer burns, or is accompanied by noise, it should be repaired in time and refueled.
3. When the bearing parts at both ends of the bearing chamber of the underwater pelletizing machine are hot or there is noise, stop the machine for maintenance and add butter. During normal operation, add butter to the bearing chamber every 5-6 days.
4. Pay attention to the operating rules of the underwater pelletizing machine; such as: the machine temperature is high or low, the speed is fast or slow, and it can be dealt with in time according to the situation.
5. When the operation of the underwater pelletizing machine is unstable, pay attention to check whether the gap of the coupling anastomosis is too tight, and adjust it in time to loosen it.
Reason analysis: The instantaneous starting voltage of the main motor of the underwater pelletizing machine is too low, the friction disc and the friction disc are overheated, the friction disc and the friction disc are aging, and the air pressure of the friction disc is too low, etc., which can cause the clutch to disengage.
Solution: When starting the main motor of the underwater pelletizing machine, avoid peak power consumption and reduce the feeding load. The minimum restart interval is 30 minutes; in summer, when the main motor is restarted more than twice, it should be extended. Interval time or forced cooling with a fan. Blow with instrument wind and wipe off the dirt on the surface of the friction plate and friction plate with a rag. If the underwater pelletizing machine wears a lot or the surface becomes "vitrified", replace the friction plate and friction plate. Confirm whether the air pressure value can make the friction disc and the friction plate fit together.
One: The different materials used by the underwater pelletizing machine must be separated clearly;
Two: The products produced by the underwater pelletizing machine should be dewatered as much as possible after being crushed and cleaned;
Three: The vent hole on the screw of the underwater pelletizing machine should be unblocked.
Nanjing JlEYA has various underwater pelletizing machines that can provide the increasing of products, and make them more effective, reliable, and consistent.
Jieya team wish you Merry Christmas and happy new year.
Thanks for old customers trust and support on our twin screw extruders machines. We always keep focusing on the quality and service. And hope to establish business relationship with all new customers. Enjoy your holidays, dear!
Jieya team wish you have a nice holiday :)
(Nanjing Jieya is a professional manufacturer of twin screw compounding extruders with 20+ years experience and competitive price. We look forward to receive your inquiry.)
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.