








The extrusion technology used by the single screw extruder is making waves in the food production industry. We know that single screw extruder can mass produce enterprise products of various shapes and textures. It allows a seamless and continuous operation process, which means that this means lower costs and higher production and sales.
What are the reasons and solutions for the poor discharge or blockage of the single screw extruder head?
What is the importance of single screw extruder temperature control?
What is the importance of single screw extruder speed control?
1. Reasons: (1) A certain section of the heater does not work, and the material is poorly plasticized. (2) The operating temperature is set too low, or the molecular weight distribution of the plastic is wide and unstable. (3) There may be foreign objects in the single screw extruder that are not easy to melt.
2. Treatment method: (1) Check the heater and replace it if necessary. (2) Verify the set temperature of each section, negotiate with the technician if necessary, and increase the temperature set value. (3) Clean and check the extrusion system and head of the single screw extruder.
Temperature control refers to the temperature of the single screw extruder during plastic extrusion, including the temperature control of the barrel, die and transition body. These temperature controls are related to the viscosity of the material, the sensitivity to temperature, and the aggregation state of the polymer. In general, the temperature of the die head and transition body of single screw extruder is low for medium and low viscosity materials, and the temperature of die head and transition body for high viscosity materials is high, and the fluidity is good.
Speed control means that for single screw extrude processing, if the screw speed increases, the shear rate increases. Thermoplastic melts are mostly non-Newtonian pseudoplastic fluids, and their viscosity decreases with the increase of shear rate, and fluidity Increasing the extrusion output also increases. However, if the shear rate is too large, the melt viscosity is too low, which will cause difficulties in the production and operation of single screw extrude. At the same time, the low-viscosity melt will flow backwards under the action of the screw back pressure, and the leakage flow will increase significantly, which will affect the output to a certain extent. , Again, the screw may even slip at high speeds, so the screw speed should be controlled within a certain range. In addition, in the production process of single screw extrude, the screw speed should be kept as stable as possible to avoid fast and slow. Otherwise, it will cause uneven discharge due to excessive changes in the melt viscosity of the material, which will affect normal production.
Nanjing JlEYA is a single screw extruder manufacturer established for more than five years. We work with customers from design to completion to ensure that all technical requirements are met.
The underwater pelletizing machine is a smart machine with a touch screen, supports touch input, and is equipped with an Android system. The main engine of the underwater pelletizing machine is an extruder, which consists of an extrusion system, a transmission system and a heating and cooling system.
What are the possible failures of the underwater pelletizing machine and their solutions?
What are the advantages of the underwater pelletizing machine?
What are the applicable materials for the underwater pelletizing machine?
Cause analysis: underwater pelletizing machine cutter wears excessively or the cutter blade is damaged, the particle water flow is too low, the pelletizer vibration is too large, the cutter and the template are not tightly attached, the material melt index fluctuates, and the discharge flow rate is inconsistent. Excessive water temperature and other reasons can cause the shutdown of the underwater pelletizing system and cause the interlocking shutdown of the entire unit.
Solution: After stopping the underwater pelletizing machine, visually check whether the cutting edge of the cutting knife is excessively worn or damaged. If so, replace the cutting knife completely. Check and confirm whether the granular water leaks internally, whether the filter and cooler of the granular water tank are blocked. If they are blocked, they should be cleaned manually; check whether the inlet and outlet pressures of the granular water pump are normal. If not, check the valves on the granular water pump and the pump pipeline. Check whether the alignment between the cutter shaft and the underwater pelletizing machine is out of tolerance, whether the bearing assembly of the cutter shaft is damaged, and whether the cutter rotor is out of balance. During operation, check whether there is any gap in the contact between the four moving wheels of the pelletizing trolley and the guide rail. Control the volatile matter in the polypropylene powder and eliminate the vibration of the cutter and cutter shaft when it flows through the template hole. Reduce the temperature of the hot oil at the template of the underwater pelletizing machine, check the temperature distribution of the cylinder and the template, and whether the flow, pressure and temperature of the cooling water of the cylinder are normal; confirm the time setting for the "water, knife, material" to reach the template to prevent particles The water reaches the template prematurely and freezes the template hole. After closing the head of the underwater pelletizing machine, the feed volume should be quickly increased to the set load of the extruder.
The underwater pelletizing machine is a new model for pelletizing plastic materials that are elastic, easy to foam at low temperature, difficult to form, and have poor flow properties. The underwater pelletizing machine breaks through the traditional method of stranding pelletizing in the past. It overcomes the shortcomings of instability, uneven particles, easy agglomeration, and low output during the granulation of elastomer raw materials.
The underwater pelletizing machine is suitable for EVA, TPU and other materials with high viscosity and high viscosity of elastomers, and also suitable for conventional materials such as PP, PE, ABS, PA, and PC.
The widespread use of underwater pelletizing machines has continuously increased the demand for them in the market. Nanjing JlEYA, as a Chinese pioneer in underwater pelletizing machine, can ensure the machines’ quality and after-sales service.
Jieya team wish you have a nice holiday :)
(Nanjing Jieya is a professional manufacturer of twin screw compounding extruders with 20+ years experience and competitive price. We look forward to receive your inquiry.)
Nanjing Team sincerely invite you to attend The 15th China Chongqing Rubber, Plastics Industry Exhibition.
Our booth no.: S2544
Time: May 27-30, 2021
Address: Chongqing International Expo Center
Wish to meet you at there ;)
In terms of the principle of motion, there are different types of twin-screw extruderswith isotropic and anisotropic meshing and non-meshing types. So what are the types of twin-screw extruders? And what are the application areas? The following is a detailed introduction.
Here is the content list:
l Isotropic twin-screw extruder
l Anisotropic twin-screw extruder
l Non-Engaging Twin-Screw Extruders
l SHJ-20 twin-screw laboratory extruder
l Application areas
These extruders are available at low and high speeds, the former mainly for profile extrusion, while the latter is used for special polymer processing operations.
(1) Close-meshing extruder. Low-speed extruders have a closely meshed screw geometry, where the profile of one screw is closely matched to the profile of the other screw, i.e., a conjugate screw profile.
(2) Self-cleaning extruder. High-speed co-rotating extruders have a closely matched screw-prong profile. This screw can be designed to have a fairly small screw gap so that the screw has a closed self-cleaning effect, this twin-screw extruder is called a tight self-cleaning co-rotating twin-screw extruder.
The tightly meshed anisotropic twin-screw extruder has a small gap between the two screw grooves (much smaller than that in a co-engaged twin-screw extruder) so that a positive conveying characteristic can be achieved.
The center distance between the two screws of a non-engaging twin-screw extruder is greater than the sum of the radii of the two screws.
It is suitable for universities, colleges, and scientific research laboratories for process and formula development, etc. It has the features of beautiful appearance, compact structure, easy to use and maintain, and precise control of process conditions. Gearbox homemade torque level: T/A3≤8 national standard main parts, twin-screw extruder new structure design, and hardened gear teeth of high precision grinding, to ensure that the gearbox works efficiently for a long time. Screw self-made: Screw elements with tightly meshed design, block type, can be easily replaced to suit different materials. Barrel captive: The precision grade of the twin-screw extruder can reach T6, favorable to energy saving, and the block type design makes various combinations possible.
The two main areas of application of twin-screw extruders are extrusion of thermosensitive materials such as PVC pipes and profiles and processing of special polymers such as blending, venting, chemical reactions, etc. Twin-screw extruders for profile extrusion have intermeshing screw ribs and grooves and operate at a low speed of about 10/min or less. Compared to single screws, twin-screw extruders have much better feeding and conveying performance, especially for those difficult to feed and easy to slip, such as fibrous, powdery, and greasy materials. The short and uniform material retention time, better mixing, and larger heat transfer area allow for good material temperature control, which is especially important for processing heat-sensitive materials.
If you want to buy a twin-screw extruder, you can consider our cost-effective products.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, After 17 years of development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
The development and application of twin screw extruders are increasingly eye-catching. Many aspects of the performance of single and twin screw extruders that dominate the extrusion industry can no longer meet the requirements of blending, filling, reinforcement, toughening and other modifications.
What is the structure of the twin screw extruder?
How does the twin screw extruder prevent material degradation?
What are the structural characteristics of the twin screw extruder?
The twin screw extruder, a unique modular screw block is designed on the screw shaft, which is broken three times within a pitch, called a mixing screw block. Corresponding to these gaps, there are three rows of mixing blocks arranged on the inner sleeve of the barrel. The pin and the screw reciprocate in the axial direction at the same time in the process of radial rotation. The twin screw extruder moves in the axial direction once every time it rotates. Due to this special movement mode and the effect of mixing and sorting screws and pins, the material is not only sheared between the mixing pins and the irregular trapezoidal mixing blocks. And it is transported back and forth. The countercurrent movement of the material adds a very useful axial mixing movement to the radial mixing. The melt is continuously cut, turned, kneaded and stretched, and the twin screw extruder regularly interrupts the simple Layered shear mixing.
Due to the simultaneous mixing in the radial and axial directions of the twin screw extruder, the mixing effect is enhanced and the best dispersion mixing and distributed mixing are ensured, so the homogenization time is short. In addition, the mutual engagement of the mixing pin and the screw block also improves the self-cleaning ability of the barrel. The twin screw extruder can ensure stable working pressure through proper screw block combination, without uncontrollable pressure and temperature fluctuations, and prevent material degradation in the barrel.
1. The main machine barrel and screw are assembled by building blocks
The barrel of the twin screw extruder is composed of multiple sets of open and closed barrels. The split barrel can be opened quickly and conveniently for easy cleaning and maintenance; the screw is composed of various mixing sleeves on the mandrel Composed of screw block and conveying screw block. The barrel and screw can be flexibly formed into an ideal form according to different types of materials and different technological requirements.
2. Unique design of gear box and swing box
The twin screw extruder realizes the axial reciprocating movement of the screw while rotating. Every time the screw rotates, it reciprocates once, and the thread is interrupted three times, thus producing a strong mixing effect. The mixing effect is in the axial direction rather than the radial direction, and occurs between the thread and the pin. All materials in the screw channel are subjected to uniform shear stress, instead of a thin layer of material being sheared.
Great products begin with the best engineering staff, and Nanjing JlEYA is ready to assist you with your technical requirements for twin screw extruder.
The twin screw extruder's standard equipment includes a sturdy base frame dedicated to housing the temperature control unit and oil lubrication system. The equipment features advanced control software for seamless integration into digital factories, ready for Industry 4.0, greatly improving ease of use. The following is a detailed description of the operating procedures of the twin screw extruder.
Here is the content list:
l Start up operation
l Stop the machine
l Precautions
Start up operation
1.Close the power main gate of the twin screw extruder.
2. Turn on the power at the operation panel: Press and hold the power button clockwise to turn and then release.
3. Set the temperature of each temperature zone: for example, a zone temperature according to the process requirements set the corresponding temperature, press the set button, and then adjust the up and down arrows to the desired temperature, press the set button.
4. Set the feeding rate: according to the process, requirements can be fed rate between 0 ~ 10 to set.
5. Set the host speed of the twin screw extruder: set the host speed between 0~30 according to the process requirements.
6. Add cooling water to the cooling tank.
7. In turn on the fan: press the operation button on the operation panel.
8. When you need to start the operation of the vacuum pump, you can start the vacuum pump.
9. Turn on the cutter switch.
1. Twin screw extruder normal stopping sequence: stop the feeder: close the vacuum line valve, open the vacuum chamber on the cover; gradually reduce the main screw speed; shut down the pelletizer and other auxiliary equipment: off the motor, each external water inlet valve.
2. Twin screw extruder emergency stop: (1) in case of an emergency need to stop the host, you can quickly press the electrical control cabinet red emergency stop button, and the host and the feed speed knob back to zero, and then the total power switch off. After eliminating the fault, you can restart the machine again in normal driving order. (2) encounter equipment automatic protection trip stop: need to set the various parameters knob to zero, and then reset the parameters, press the reset button and start the machine again.
1. The normal production of the first shift machine, be sure to first check whether the barrel, hopper seal is the original closed kind, such as changes or damage, should check the hopper, the machine inside the Jane there are no foreign objects.
2. Pay attention to the screw to start at a low speed, the air time can not exceed 3min.
3. Must pay attention to check the purity of each batch of material, do not allow any impurities mixed into the material.
4. The beginning of the material to pay attention to the first small amount, evenly added material, while paying attention to observe the current meter (torque meter) pointer changes.
For granular material, use metering to add material. When you first start to feed production, be sure to pay attention to the extruder production work overload phenomenon. After the forming die lip out of the material, and then gradually increase the screw speed as appropriate.
5. Often check the working condition of the motor carbon brush, abnormalities should be replaced or adjusted promptly.
6. The screw cleaning work is not allowed to use steel tools scraping material, the application of copper brush, shovel cleaning.
7. When the process temperature is suspected of displaying problems on the instrument, use mercury temperature, meter actual measurement of the machine Jane, and molding mold degree. Refer to the mercury temperature measured temperature, adjust the calibration instrument to show the temperature.
If you still have questions, you can consult our company. Our company's website is https://www.njjyextrusion.com/