








Twin screw extruder is developed based on the single screw extruder, which has been widely used in the molding process of extruded products because of its good feeding performance, mixing and plasticizing performance, exhaust performance, and extrusion stability. So what are the advantages of a twin screw extruder? The following is a detailed introduction.
Here is the content list:
l Wear and tear
l Reduce production costs
l Increase output
l Improve labor efficiency
l High torque and high speed
Wear and tear
Since twin screw extruders are easy to open, the degree of wear of threaded elements and barrel bushings can be detected at any time, so that effective repair or replacement can be carried out. It is not necessary to find out only when there is a problem with the extruded product, which causes unnecessary waste.
Reduce production costs
When producing masterbatches on twin screw extruders, it's usually necessary to alter colors, and if a product amendment is critical, to open the open process space within several minutes, in addition to analyzing the mixing process by looking at the melt profile on the entire screw. The current common twin screw extruder needs to be cleared with a large amount of clearing material when changing colors, which is time consuming, power consuming, and a waste of raw material. The split twin screw extruder can solve this problem. When changing the color, it only takes a few minutes to quickly open the barrel for manual cleaning, so that no or less cleaning material can be used, saving costs.
Increase output
Twin screw snack extruders use side feeding technology to improve the integrity of the material and greatly increase production. The position and shape of the feed opening also have a great influence on feeding efficiency. With the same parameters, the output increases with an increase in the feed area. A rectangular cross section has a higher feed efficiency than a circular cross section for the same inlet area. The use of side by side twin screw feeds is also based on this consideration.
Improve labor efficiency
During equipment maintenance, ordinary twin screw extruders often have to remove the heating and cooling system before the screw can be withdrawn as a whole. In contrast, the split twin screw does not need to be opened by loosening a few bolts and turning the worm gearbox handle device to lift the upper half of the barrel, and then the entire barrel can be repaired. This shortens the maintenance time and reduces the labor intensity.
High torque and high speed
At present, the event trend of twin screw extruders within the world is to develop within the direction of high torsion, high speed, and low energy consumption, and also the impact of high speed is high productivity. The split twin screw extruder belongs to the current class, and its speed will reach and five hundred revolutions per minute. Therefore, its distinctive benefits in process high viscousness and warmth sensitive materials.
In the high speed, high torque core technology, asymmetric and symmetric high torque gearbox currently only Germany and Japan related manufacturers master the core technology, its speed can reach up to 1800 rpm or more, and domestic also master this core technology, such as Nanjing JlEYA extrusion company, is also currently one of the main choices of domestic high end material processing manufacturers, belongs to the domestic independent innovation national encouragement projects.
If you want to buy twin screw extruders, you can consider our cost effective products. We insist on the tenet of "quality first, customer first" and warmly welcome new and old customers to cooperate with us.
The company focuses on twin screw extruders, micro twin screw extruders, plastic extruders, parallel twin screw extruders, and other research and development and manufacturing as the core of the isotropic rotary twin screw mixing and extruding machine, the application range covers the mixing and modification of granulation, polymerization, deswelling, step molding, recycling, and other fields.
Degradable plastics refer to a class of plastics whose various properties can meet the requirements of use, remain unchanged during the shelf life, and can be degraded into environmentally harmless substances under natural environment conditions after use. Therefore, it is also called environmentally degradable plastic.
There are a variety of new plastics: photodegradable plastics, biodegradable plastics, light/oxidative/biodegradable plastics, carbon dioxide-based biodegradable plastics, thermoplastic starch resin degradable plastics.
There are two main areas for the use of degradable plastics: one is the area where ordinary plastics were originally used. In these areas, the difficulty of collecting used or post-consumer plastic products will cause harm to the environment, such as agricultural mulch and single-use plastic packaging, and the second is areas where plastics are used instead of other materials. The use of degradable plastics in these areas can bring convenience, such as ball tacks for golf courses, and seedling fixing materials for tropical rainforest afforestation.
Specific applications are:
1.Agriculture, forestry and fishery, plastic film, water-retaining materials, seedling pots, seedbeds, rope nets, slow-release materials for pesticides and agricultural fertilizers.
2.Packaging industry, shopping bags, garbage bags, compost bags, disposable lunch boxes, instant noodle bowls, buffer packaging materials.
3.Sporting goods, golf tacks and tees
4.Hygiene products, women's hygiene products, baby diapers, medical mattresses, disposable haircuts.
5.Medical materials, bandages, clips, small sticks for cotton swabs, gloves, drug release materials, and surgical sutures and fracture fixation materials.
Nanjing Jieya also manufactures twin screw compounding extruder for bio-degradable material. We warmly welcome your inquiry.
The twin screw extruder has the basic principles of single-screw extruder: solid conveying, melt pressurization and pumping, mixing and stripping and evaporation, but it is not limited to this. The development of twin screw extrusion theory is relatively late, coupled with its wide variety, messy screw shape, and messy extrusion process, which brings many difficulties to the research. And the following words will give you a brief introduction about the information of the twin screw extruder.
What is the future research direction of twin screw extruder?
What is the basic principle of a twin screw extruder?
What is the difference between a twin screw extruder and a traditional extruder?
1. Established the physical model and mathematical model of the twin screw extruder to guide the design of the twin screw extruder and the optimization of the extrusion process.
2. It is necessary to understand the relationship between the true state change, the mixing form, the whole process of the structure change and the later mixing and characteristics of two or more polymers and materials during the entire extrusion process.
3. As a twin screw extruder, it establishes the internal connection between the entire reaction process, speed and characteristics of the extrusion reaction molding and the screw structure and operating conditions. It can be extruded through reaction molding.
The twin screw extruder has the basic principles of single-screw extruder: solid conveying, melt pressurization and pumping, mixing and stripping and evaporation, but it is not limited to this. The development of twin screw extrusion theory is relatively late, coupled with its wide variety, messy screw shape, and messy extrusion process, which brings many difficulties to the research.
Generally speaking, the research of twin-screw extrusion theory is still in the development link, which is called "technology more than science". From the perspective of the entire extrusion process of a twin screw extruder, there are about three parts: the polymer's physical state change rule during the extrusion process, the basic principle of conveying, the conveying of solid melt, the exhaust phase and the law, and the establishment of mathematics The physical model is used to guide the planning of the twin screw extruder and the optimization of the extrusion system process.
The traditional extrusion molding process requires rotating a giant screw in the barrel. When using twin screw extrusion, the two screws mesh with each other and rotate together during the extrusion operation. They are installed in the housing on the spline shaft of the barrel. The twin screw extruder can simultaneously ensure food molding, heating, cooling, compression, mixing, pumping and even transportation.
At present, twin screw extruder has become the most common extruder with the largest variety and specifications in the world. Nanjing JlEYA has committed to fulfilling all the requirements of twin screw extruders. And it welcomes global customers to purchase.
Nanjing JIEYA hereby sincerely invited you to attend 2021 China (Hainan) Degradation Exhibition.
Our booth no.: B06
Time: June 23-25
Add: Hainan International Convention and Exhibition Center
We warmly welcome your coming and look forward to cooperate with you ;)
The single screw extruder is a special reduction power device designed for plastic and rubber single screw extruder equipment. The reducer is matched with the motor. The gear parts are made of high-strength alloy steel. The gears are processed by carburizing, quenching, and high-precision gear grinding. The gear accuracy is level 6, and the tooth surface hardness is HRC58-62.
What is the principle of single screw extruder?
What is the current industry development of single screw extruder?
What should I pay attention to when using single screw extruder?
The single screw extruder is generally divided into three sections in effective length. The effective length of the three sections is determined according to the diameter of the screw and the pitch and depth of the screw, which are generally divided into one-third of each; the last thread of the single screw extruder has been called the conveying section. It is required that it cannot be plasticized, but it must be preheated and compressed;
The second section of the single screw extruder is called the compression section. At this time, the volume of the screw groove gradually decreases, and the temperature must reach the degree of plasticization of the material. The compression produced here is from the conveying section three, and here it is compressed to one. Some machines also have Change, the plasticized material enters the third stage;
The third section of the single screw extruder is the metering section, where the material maintains the plasticizing temperature to supply the machine head, which is generally slightly higher than the plasticizing temperature.
In single screw extruder equipment, the plastic extruder is normally referred to as the main machine and the following equipment, the plastic extruder, is referred to as the auxiliary machine. After more than 100 years of development, the plastic extruder has been derived from the original single-screw extruder, a variety of models such as double-screw, multi-screw and even non-screw models have been derived. The plastic extruder (host) can be used with different plastic moulding machines such as tube, foil, holding material, monofilament, flat wire, strapping, extruding network, plate material, profile material, pelleting, cable coating, etc. are used. Suitable for different plastic extrusion production lines for the production of different plastic products. Therefore, plastic extrusion machines are today and in the future one of the most common models in the plastics processing industry.
What should I pay attention to when using single screw extruder?
(1) The material convey way of the single screw extruder mainly relies on friction, which limits its feeding performance. And it is difficult to add the powder, paste, glass fiber and inorganic fillers, so pay attention to the material used.
(2) When the pressure of the single screw extruder head is high, the reverse flow will increase and the productivity will decrease. Therefore, always pay attention to the pressure of the equipment.
(3) The surface renewal effect of the single screw extruder material in the exhaust zone is small, so the exhaust effect is poor.
(4) single screw extruder is not suitable for certain processes, such as polymer coloring, thermosetting powder processing, etc.
The single screw extruder has achieved an irreplaceable position in industrial production. Nanjing JlEYA is committed to providing various bending and rolling machines of high quality for all customers from all over the world.
A plastic extruder performs all of the following processes through a barrel with a screw and auger channel. The plastic pellets enter the barrel through a hopper at one finish of the barrel and are then transferred through the screw to the opposite finish of the barrel. What are the working principle and molding principles of a plastic extruder? The following is a detailed description.
Here is the content list:
Working principle
Forming principle
Pressure and shearing, etc., convert the solid plastic into a uniform and consistent melt and send the melt to the next process. The production of the melt involves processes such as mixing additives such as masterbatches, blending resins, and re-crushing. The finished melt must be homogeneous in consistency and temperature. The pressurization must be high enough to extrude the viscous polymer.
To have sufficient pressure, the depth of the threads on the screw decreases as the distance to the hopper increases. The external heating and the internal heat generated in the plastic and the screw due to friction softens and melts the plastic. The design requirements for plastic extruders often vary from polymer to polymer and from application to application. Many options involve discharge ports, multiple loading ports, special mixing devices along the screw, cooling and heating of the melt with or without an external heat source (adiabatic plastic extruders), the relative size of the gap variation between the screw and the barrel, and the number of screws. For example, twin-screw plastic extruders allow for more thorough mixing of the melt than single-screw plastic extruders. Tandem extrusion uses the melt-extruded from the first plastic extruder as feedstock for the second plastic extruder, which is typically used to produce extruded polyethylene foam.
D L the characteristic dimensions of plastic extruders are the diameter of the screw (D) and the ratio of the length of the screw (L) to the diameter D L/D (D) (L/D. Plastic extruders usually consist of at least three segments. The first section, near the L/D) filling hopper, is the filling section. Its function is to allow the material to enter the plastic extruder at a relatively smooth rate. In general, this section will be kept at a relatively low temperature to avoid clogging the charging channels. The second section is the compression section, where the melt is formed and the pressure is increased. The transition from the charging section to the compression section can be abrupt or gradual (gentle). The last half, the metering section, is adjacent to the plastic extruder outlet and its main operate is that the uniformity of the fabric flowing out of the plastic extruder. In this section, the material should have sufficient residence time to ensure uniformity of composition and temperature.
At the end of the barrel, the plastic melt leaves the plastic extruder through a head that is designed in an ideal shape for the extruded melt stream to pass through.
Another important part is the drive mechanism of the plastic extruder. It controls the rotational speed of the screw, which determines the output of the plastic extruder. The power required is determined by the viscosity (flow resistance) of the polymer. The viscosity of the polymer depends on the temperature and flow rate and decreases with increasing temperature and shear. Plastic extruders are equipped with screens that keep impurities out of the screen. To avoid downtime, the screens should be able to be changed automatically. This is especially important when processing resin with impurities, such as recycled material. The extruder's screw is divided into feeding section, plasticizing, melting section, temperature according to the process parameters of the plastic particles, the model according to the diameter of the screw 20, 36, 52, 65, 75, 95, 120, 135. Plastic particles heated by the movement of the screw to change the original state, there are many types, depending on the specific application. The capacity of the frequency conversion is proportional to the diameter of the screw and then adjusted according to the different raw materials.
The extrusion method of plastic extruders generally refers to the melting of plastic at a high temperature of about 200°C. The melted plastic is then passed through a die to form the desired shape. Extrusion molding requires a deep understanding of the characteristics of plastics and extensive experience in mold design and is a technically demanding molding method.
Extrusion molding is a method of a continuous flow of material through a die by heating and pressurizing in an extruder, also known as "extrusion molding". Compared with other molding methods, it has the advantages of high efficiency and low unit cost.
Extrusion is mainly used for molding thermoplastics, but it can also be used for some thermosets. Extruded products are continuous profiles, such as tubes, rods, wires, sheets, films, wire, and cable cladding, etc. In addition, it can also be used for mixing, plasticizing and granulating, coloring, blending, etc. plastics.
The extruded products can be called "profiles", which are also called "profiles" because of their irregular cross-sectional shape.
The plastic extruder is a common plastic machinery equipment, in the process of the daily operation of the extruder, the extruder will have a variety of failures, affecting the normal production of plastic machinery, the following we will analyze the extruder failure.
Here is the content list:
Unstable host current
The main motor can not start
The head is not discharged smoothly or blocked
The main electric starting current is too high
The main motor makes an abnormal sound
1. Production reasons.
(1) Uneven feeding.
(2) The main motor bearing of the plastic extruder is damaged or poorly lubricated.
(3) A section of the heater is out of order and does not heat up.
(4) The screw adjustment pad is not correct, or the phase is not correct, and the component interferes.
2. Treatment methods.
(1) Check the feeder, troubleshooting.
(2) Overhaul the main motor of the plastic extruder, replace the bearings if necessary.
(3) Check whether each heater is working properly, replace the heater if necessary.
(4) Check the adjustment pad, pull out the screw to check whether there is interference with the screw.
1. Causes.
(1) There is a mistake in the start-up procedure of the plastic extruder.
(2) The main motor thread has a problem, whether the fuse is burned ring.
(3) The main motor-related chain device to function
2. Treatment methods.
(1) Check the program, reboot the machine in the correct boot sequence.
(2) Check the main motor circuit.
(3) Check whether the lube oil pump of the plastic extruder is started and check the status of the chain device associated with the main motor. The oil pump is not on and the motor cannot be turned on.
(4) The inverter induction power has not been discharged. Turn off the main power and wait for 5 minutes before starting again.
(5) Check whether the emergency button is reset.
1. Causes.
(1) A section of the heater does not work, and the material is not plasticized well.
(2) The operating temperature setting is low, or the molecular weight distribution of plastic is wide and unstable.
(3) There may be foreign substances that do not melt easily.
2. Treatment methods.
(1) Check the heater of the plastic extruder and replace it if necessary.
(2) Verify the set temperature of each section, and if necessary, consult with the technician to increase the temperature setting.
(3) Clean and check the extrusion system and the head.
1. Causes.
(1) Insufficient heating time and high torque.
(2) A section of the heater does not work.
2. Treatment methods.
(1) Apply hand pan machine when starting, if not easy, extend the heating time or check whether each section heater is working properly.
1. Produced by.
(1) The main motor bearing of the plastic extruder is damaged.
(2) The main motor silicon controlled rectifier line in silicon controlled damage.
2. Treatment methods.
(1) Replace the main motor bearings.
(2) Check the silicon-controlled rectifier circuit, if necessary, replace the silicon-controlled components.
Our company's website is https://www.njjyextrusion.com/. If you still have questions, you can contact us on the official website.
The structure of the engineering plastic twin screw extruder barrel is basically similar to that of the single-screw extruder screw barrel. From the appearance structure, the twin-screw extruder barrel is also divided into an integral barrel and a segmented barrel. The engineering plastic twin screw extruder is an upgrade of the single screw extruder, which has also greatly improved the efficiency of use.
What are the reasons why people choose engineering plastic twin screw extruder?
What is the workflow of engineering plastic twin screw extruder?
What are the essential devices in the engineering plastic twin screw extruder?
1. Improve labor efficiency
When the equipment is repaired, engineering plastic twin screw extruder only needs to loosen a few bolts, turn the worm gear box handle device to lift the upper part of the barrel to open the entire barrel, and then perform repairs. This not only shortens the maintenance time, but also reduces the labor intensity.
2. High torque and high speed
The development trend of engineering plastic twin screw extruder in the world is towards high torque, high speed, and low energy consumption. The effect of high speed is high productivity. engineering plastic twin screw extruder belongs to this category, and its speed can reach 500 rpm. Therefore, it has unique advantages in processing high-viscosity, heat-sensitive materials.
3. Wide range of applications
engineering plastic twin screw extruder has a wide range of applications and can be applied to the processing of a variety of materials
4. High output, high quality
engineering plastic twin screw extruder has other advantages of ordinary extruder, and can achieve high output, high quality and high efficiency.
The engineering plastic twin screw extruder used for profile extrusion is usually tightly meshed and rotated in different directions, although a few also use co-rotating twin screw extruders, generally operating at a relatively low screw speed, about 10 r/ min. The high-speed meshing co-rotating engineering plastic twin screw extruder is used for compounding, venting or as a continuous chemical reactor. The maximum screw speed of this type of extruder is 300-600r/min. Non-intermeshing extruder is used for mixing, venting and chemical reaction. Its conveying mechanism is quite different from intermeshing extruder, which is closer to the conveying mechanism of single screw extruder, although there are essential differences between the two.
Among the straightening devices used in engineering plastic twin screw extruder, the most common one is eccentric, and various types of bending of the core are one of the important reasons for the insulation eccentricity. In sheath extrusion, scratches on the sheath surface are often caused by the bending of the cable core. Therefore, the straightening device in various engineering plastic twin screw extruder is indispensable. The main types of straightening devices are: drum type (divided into horizontal and vertical); pulley type (divided into single pulley and pulley block); winch type, which has multiple functions such as dragging, straightening, and tension stabilization; Press wheel type (divided into horizontal type and vertical type), etc.
The engineering plastic twin screw extruders are used more and more widely in daily life, but its quality has a great influence on the experience of use. Nanjing JlEYA has focused on the production and development of engineering plastic twin screw extruders for more than several years, and they have always put the needs of customers as their top priority.
The Underwater pelletizing machine cuts pellets on the plastic steel ejection surface without centrifugal action to eject them, but direct water pressure flows through the nozzle surface to drain.
What is contained in the extrusion system of the Underwater pelletizing machine?
What is the use of the Underwater pelletizing machine?
What are the causes and solutions for the high melting of the Underwater pelletizing machine?
The extrusion system includes a snail, a cylinder, a funnel, a nozzle, and a nozzle. Through the extrusion system, the plastic is plasticized into a uniform melt and continuously extruded by the screw under the resulting pressure.
(1) Screw: It is the most important part of the Underwater pelletizing machine. It is directly related to the scope and productivity of the extruder. It consists of high-strength corrosion-resistant alloy steel.
(2) Cylinders: The cylinder is a metal cylinder that is generally made of alloy steel or composite steel tubes clad with alloy steel, heat resistant, high-pressure resistant, strong, wear-resistant, and corrosion-resistant. The cylinder and the screw are matched to each other to realize the crushing, grinding, melting, plasticization, suction, and compaction of the plastic as well as the continuous and uniform supply of the rubber material to the molding system. In general, the barrel length of an Underwater pelletizing machine is 15-30-fold its diameter, so that the plastic is completely heated and plasticized.
Underwater pelletizing machines can be used for chemical fertilizers, white soot, inorganic salts, chlorinated isocyanic acid, bleaching powder, pesticides, oxides, etc. as well as for industrial recycling dust: such as cast iron dust, lead, zinc, aluminum dust, converter dust, filter dust, grinding dust, etc. The material is forced to be pressed and molded by mechanical pressure without adding a net, and the purity of the product is guaranteed. The process process process is short, energy consumption is low, and performance high. The dry powder is directly granulated without a subsequent drying process, which is more conducive to the connection and transformation of the existing production process. The granular strength is high and the increase in bulk density is more significant than in other granulation processes. The Underwater pelletizing machine is particularly suitable for occasions to increase the specific weight of the product collection. The operating flexibility is great, the range of applications is wide and the crushing force can be adjusted by hydraulic pressure.
Causes analysis: high filter masks, low melting index of polypropylene powder and high feed volume, low temperature of each section of the Underwater pelletizing machine results in the material being incompletely melted, and a low opening rate of the template impede the extrusion of the nozzle head material, etc. The reasons may cause the melting pressure to be too high.
Solution: If the Underwater pelletizing machine produces products with a low melting index, a filter with a low mesh width should be used and the throttle opening should be enlarged to reduce backpressure; the filter should be replaced in time and the quality of different additives and polypropylene powder should be monitored. Contains medium ash. Reduce the feed load. Without compromising the quality of the extruded product, increase the temperature of each section of the cylinder to increase the temperature of the polypropylene melt and increase the flow capacity of the material. After the extruder has been stopped, increase the temperature of the head of the Underwater pelletizing machine and keep it at a constant temperature for a while and rinse and then thoroughly clean the template.
The underwater pelletizing machine have been used in many fields Nanjing JlEYA maintains close relationships with customers in underwater pelletizing machine industry, and is committed to strengthening production and operation, improving quality and safety.