








The plastic extruder is a common plastic machinery equipment, in the process of the daily operation of the extruder, the extruder will have a variety of failures, affecting the normal production of plastic machinery, the following we will analyze the extruder failure.
Here is the content list:
Unstable host current
The main motor can not start
The head is not discharged smoothly or blocked
The main electric starting current is too high
The main motor makes an abnormal sound
1. Production reasons.
(1) Uneven feeding.
(2) The main motor bearing of the plastic extruder is damaged or poorly lubricated.
(3) A section of the heater is out of order and does not heat up.
(4) The screw adjustment pad is not correct, or the phase is not correct, and the component interferes.
2. Treatment methods.
(1) Check the feeder, troubleshooting.
(2) Overhaul the main motor of the plastic extruder, replace the bearings if necessary.
(3) Check whether each heater is working properly, replace the heater if necessary.
(4) Check the adjustment pad, pull out the screw to check whether there is interference with the screw.
1. Causes.
(1) There is a mistake in the start-up procedure of the plastic extruder.
(2) The main motor thread has a problem, whether the fuse is burned ring.
(3) The main motor-related chain device to function
2. Treatment methods.
(1) Check the program, reboot the machine in the correct boot sequence.
(2) Check the main motor circuit.
(3) Check whether the lube oil pump of the plastic extruder is started and check the status of the chain device associated with the main motor. The oil pump is not on and the motor cannot be turned on.
(4) The inverter induction power has not been discharged. Turn off the main power and wait for 5 minutes before starting again.
(5) Check whether the emergency button is reset.
1. Causes.
(1) A section of the heater does not work, and the material is not plasticized well.
(2) The operating temperature setting is low, or the molecular weight distribution of plastic is wide and unstable.
(3) There may be foreign substances that do not melt easily.
2. Treatment methods.
(1) Check the heater of the plastic extruder and replace it if necessary.
(2) Verify the set temperature of each section, and if necessary, consult with the technician to increase the temperature setting.
(3) Clean and check the extrusion system and the head.
1. Causes.
(1) Insufficient heating time and high torque.
(2) A section of the heater does not work.
2. Treatment methods.
(1) Apply hand pan machine when starting, if not easy, extend the heating time or check whether each section heater is working properly.
1. Produced by.
(1) The main motor bearing of the plastic extruder is damaged.
(2) The main motor silicon controlled rectifier line in silicon controlled damage.
2. Treatment methods.
(1) Replace the main motor bearings.
(2) Check the silicon-controlled rectifier circuit, if necessary, replace the silicon-controlled components.
Our company's website is https://www.njjyextrusion.com/. If you still have questions, you can contact us on the official website.
The extrusion technology used by the single screw extruder is making waves in the food production industry. We know that single screw extruder can mass produce enterprise products of various shapes and textures. It allows a seamless and continuous operation process, which means that this means lower costs and higher production and sales.
What are the reasons and solutions for the poor discharge or blockage of the single screw extruder head?
What is the importance of single screw extruder temperature control?
What is the importance of single screw extruder speed control?
1. Reasons: (1) A certain section of the heater does not work, and the material is poorly plasticized. (2) The operating temperature is set too low, or the molecular weight distribution of the plastic is wide and unstable. (3) There may be foreign objects in the single screw extruder that are not easy to melt.
2. Treatment method: (1) Check the heater and replace it if necessary. (2) Verify the set temperature of each section, negotiate with the technician if necessary, and increase the temperature set value. (3) Clean and check the extrusion system and head of the single screw extruder.
Temperature control refers to the temperature of the single screw extruder during plastic extrusion, including the temperature control of the barrel, die and transition body. These temperature controls are related to the viscosity of the material, the sensitivity to temperature, and the aggregation state of the polymer. In general, the temperature of the die head and transition body of single screw extruder is low for medium and low viscosity materials, and the temperature of die head and transition body for high viscosity materials is high, and the fluidity is good.
Speed control means that for single screw extrude processing, if the screw speed increases, the shear rate increases. Thermoplastic melts are mostly non-Newtonian pseudoplastic fluids, and their viscosity decreases with the increase of shear rate, and fluidity Increasing the extrusion output also increases. However, if the shear rate is too large, the melt viscosity is too low, which will cause difficulties in the production and operation of single screw extrude. At the same time, the low-viscosity melt will flow backwards under the action of the screw back pressure, and the leakage flow will increase significantly, which will affect the output to a certain extent. , Again, the screw may even slip at high speeds, so the screw speed should be controlled within a certain range. In addition, in the production process of single screw extrude, the screw speed should be kept as stable as possible to avoid fast and slow. Otherwise, it will cause uneven discharge due to excessive changes in the melt viscosity of the material, which will affect normal production.
Nanjing JlEYA is a single screw extruder manufacturer established for more than five years. We work with customers from design to completion to ensure that all technical requirements are met.
The single-screw extruder has a simple design and a low price, so it is widespread and demand on the market was high.
What are the application areas and benefits of single-screw extruders?
What is the development history of the single-screw extruder?
What are the main technical parameters of the single-screw extruder?
The single-screw extruder is mainly used for extruding soft and hard polyvinyl chloride, polyethylene, and other thermoplastic. It can process a variety of plastic products such as films, tubes, plates, tapes, etc., can also be used for granulation.
The single-screw extruder is characterized by advanced design, high quality, good plasticization, and low energy consumption. It uses an evolutionary drive that is characterized by low noise development, stable operation, high load capacity, and long service life.
The single-screw extruder is one of the most important devices for the processing of plastic molding parts. It uses external energy transfer and heat transfer of external heating elements to carry out the transport of plastics solids, compaction, melting, shielding, and extrusion forms.
Since the birth of the snail extruder, it has evolved from an ordinary snail extruder to a new type of snail extruder after almost a hundred years of development. Although there are many types of new single-screw extruders, the extrusion machine is the same.
The extrusion process of the traditional snail extruder is realized by heating outside the cylinder, solid and cylinder, snail friction, and melting shear force.
"friction coefficient" and "friction force", "viscosity" and "shear tension" are the main factors influencing the performance of conventional screw extruders. The extrusion process from the machine is unstable and difficult to control, especially for some heat-sensitive plastics with poor thermal stability and high viscosity.
1. Screw diameter: refers to the diameter of the outer circle of the screw, marked with D, and the unit is millimeter (mm).
2. Proportion of screw length to diameter: refers to the ratio of the length L of the working part of the screw (the length of the threaded part, i.e. the length from the center line of the feed opening to the end of the screw) and the screw diameter D, expressed by L/D.
3. Snail speed range: refers to the highest speed of the snail up to the lowest speed of the snail; n is used to represent the speed of the snail, and the unit is revolutions per minute (U/min).
4. The power of the main screw drive engine: expressed by P, the unit is kilowatt (kW).
5. Heating performance of the extruder cylinder: expressed by E is the unit kilowatt (kV).
6. The output capacity of the extruder: expressed by Q, the unit is kilogram per hour (kg/h).
7. The height of the extruder rim: refers to the distance from the center line of the screw to the ground, expressed by H, and the unit is millimeters (mm).
8. Extruder outer dimensions: refers to total length (x) total width (x) total height expressed by L x B x H, and the unit is millimeters or meters (m m or m)
9. Extruder quality: expressed in W, the unit is kilogram or tonne (kg or t).
We can see the huge role that single-screw extruders play in the production industry, and they have become indispensable components. And Nanjing JlEYA a Chinese pioneer in single-screw extruder production,has committed to providing the most suitable single-screw extruder at a reasonable price, and whatever it takes to satisfy the customer’s needs.
Twin-screw extruders have barrels with an extension range of 4 and 6D, allowing for precise process design to meet specific customer requirements. All barrels allow for precise temperature control. Cooling is achieved by cooling water injection and high-performance electric heating rods for direct and fast heating. The auxiliary equipment of the twin-screw extruder consists of a straightening device, a preheating device, and a cooling and heating device. The following is a detailed description of the auxiliary equipment.
Here is the content list:
l Straightening device
l Preheating device
l Cooling device
One of the most common types of plastic extrusion rejects is eccentricity, and bending of the wire core in various patterns is one of the most important causes of insulation eccentricity. In sheath extrusion, scratches on the sheath surface are also often caused by the bending of the cable core. Therefore, a variety of extrusion units in the straightening device is essential. The main types of straightening devices are roller type (divided into horizontal and vertical type); pulley type (divided into single pulley and pulley group); stranded pulley type, which plays a variety of roles such as dragging, straightening, and stabilizing tension; pressure pulley type (divided into horizontal and vertical type), etc.
Cable core preheating is necessary for both insulation extrusion and sheath extrusion. For the insulation layer, especially the thin layer of insulation, the existence of pores should not be allowed, the core can be completely removed from the surface of the water, oil, and dirt through high temperature preheating before extrusion. For the sheath extrusion, the main role is to dry the cable core, to prevent the role of moisture (or moisture around the bedding layer) to make the sheath in the possibility of porosity. Preheating can also prevent the plastic from being extruded due to sudden cooling and residual internal pressure. In the process of extruding plastic, preheating can eliminate the cold line into the high-temperature heat, in contact with the plastic at the mouth of the die to form a disparity in temperature, to avoid fluctuations in plastic temperature and lead to fluctuations in extrusion pressure, to stabilize the amount of extrusion and ensure the quality of extrusion. Extrusion unit is used in the electric heating core preheating device, requires sufficient capacity, and ensures rapid temperature rise, so that the core preheating and cable core drying efficiency. The preheating temperature is restricted by the speed of wire release, generally similar to the temperature of the head.
The formed plastic extrusion layer after leaving the head should be immediately cooled and shaped, otherwise, deformation will occur under the action of gravity. The way of cooling usually uses water cooling, and according to the water temperature is different, divided into rapid cooling and slow cooling. Rapid cooling is the direct cooling of cold water, rapid cooling of plastic extrusion layer sizing is beneficial, but for crystalline polymers, due to sudden heat cooling, easy to internal residual stress in the extrusion layer organization, resulting in the use of the process of cracking, general PVC plastic layer using rapid cooling. Slow cooling is to reduce the internal stress of the product, in the cooling water tank placed in sections of different temperatures of water, so that the product gradually cool down and set, PE, PP extrusion on the use of slow cooling, that is, after hot water, warm water, cold water three cooling.
If you are engaged in a twin-screw extruder-related industry, you can consider our cost-effective products.
Nanjing JIEYA hereby sincerely invited you to attend 2021 China (Hainan) Degradation Exhibition.
Our booth no.: B06
Time: June 23-25
Add: Hainan International Convention and Exhibition Center
We warmly welcome your coming and look forward to cooperate with you ;)
PVC compounding extruder is divided into two types of hard and soft RPVC pipes, RPVC pipes are chemically resistant and insulating, mainly transporting various fluids and used as wire sleeves, etc. SPVC pipes are manufactured by extruding PVC resin with a large amount of plasticizer and a certain amount of stabilizer and other additives after granulation. The following is a detailed description of the equipment functions of the PVC compounding extruder.
Here is the content list:
High Speed Mixer High-Speed Mixing
Accurate matching of feeding device
Water tank for pipe forming
Traction machine frequency conversion speed control
Automatic cutting
Unloading the material from the turning frame
Raw material intermixture is to feature PVC stabilizer, softener, inhibitor, and different auxiliary materials to the high-speed mixer in proportion and sequence to the method.
The PVC compounding extruder part is equipped with a quantitative feeding device to match the extrusion volume with the feeding volume to ensure stable extrusion of products. Due to the characteristics of the conical screw, the feeding section has a larger diameter, and the heat transfer area and sheer speed of the material are larger, which is contributive to the plasticization of the fabric and also the little diameter of the screw within the metering section reduces the warmth transfer space and also the sheer speed of the soften so that the melt can be extruded at a lower temperature. When the screw rotates in the barrel, the PVC mixture is plasticized and pushed to the head to achieve compaction, melting, mixing, and homogenization and to achieve the purpose of exhaust and dehydration. The feeding device and screw drive device adopt frequency conversion to realize synchronous speed regulation.
PVC compounding extruder dies head part of the compacted, molten, blended, and homogenized PVC has subsequent materials through the screw to the die head extrusion die head is the key component of pipe forming.
The vacuum shaping water tank of PVC compounding extruderis used for pipe shaping and cooling, the vacuum shaping water tank is equipped with vacuum system for shaping and cooling and water circulation system stainless steel box body circulating water spray cooling, the vacuum shaping water tank is equipped with front and rear moving device and left and right, high and low adjustment manual device.
The traction machine is used to continuously and automatically lead the cooled and hardened pipe from the head with frequency control.
The cutting machine is controlled by the travel switch according to the required length and then automatically cut and delay the turning frame to implement the flow of production, the cutting machine with a fixed-length work switch signal as a command to complete the whole process of cutting in the cutting process and pipe running synchronization cutting process is completed by electric and pneumatic drive, the cutting machine is equipped with a dust suction device to suck out the cutting debris and recycling.
Unloading the material from the turning frame
The material turning action is controlled by the cylinder through the air circuit to achieve the material turning frame is equipped with a limit device when the cutting saw cut off the pipe after the pipe continues to transport after a delay, the cylinder into the work of turning action to achieve the purpose of unloading. After unloading, it will be automatically reset after a delay of several seconds to wait for the next cycle.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in twin screw extruder, mini twin screw extruder, plastic extruder and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology andother fields.
A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
With the development of modern industry, the underwater pelletizing machine has become an important production equipment used in all aspects of production.
What is the working principle of the underwater pelletizing machine?
What is the operating procedure of the underwater pelletizing machine?
What are the reasons why people choose underwater pelletizing machine?
The material using the underwater pelletizing machine will pass through the feeding port, and under the action of the rotating screw, it will be rolled into a dough and roll forward along the screw groove. Due to the shear, compression and agitation of the screw, the material will be further mixed and plasticized. , The temperature and pressure gradually increase, showing a state of viscous flow, and passing through the machine head with a certain pressure and temperature, and finally a product of the desired shape is obtained.
(1) Check the rotation direction of the impeller of the underwater pelletizing machine. From the feed inlet, the impeller should turn counterclockwise, otherwise the motor connection should be adjusted.
(2) The starting sequence of the underwater pelletizing machine and the material conveying equipment is as follows:
Discharge belt conveyor→PL vertical impact crusher→feeding belt conveyor
The crusher must be started without load, and the material can only be fed after the crusher is running normally.
(3) The feed size is strictly in accordance with the feed size specified by the various models. It is forbidden to enter the underwater pelletizing machine with the size of the material larger than the specified size, otherwise it will cause the impeller imbalance and excessive wear of the impeller, and even block the impeller flow path and The central feed pipe prevents the crusher from working normally. When a large piece of material is found, it should be removed in time.
(4) When the discharge belt conveyor stops running, the feeding should be stopped immediately, so the discharge belt conveyor should be interlocked with the feeding system to open and stop. Otherwise, the impeller will be crushed and the motor will be burnt.
(5) The feeding of the underwater pelletizing machine should be uniform and continuous.
(6) During the operation of the underwater pelletizing machine, there must be no violent vibration or abnormal noise, otherwise, it should be stopped immediately for inspection, and the machine can only be driven in order after the fault is removed.
(7) The observation door should be sealed tightly during the working process of the underwater pelletizing machine.
The difference between the underwater pelletizing machine and other similar products is that it has a steady stream of water flowing through the mold surface, and it is in direct contact with the mold surface. The size of the pelletizing chamber is just enough to allow the pelletizing knife to rotate freely across the die surface without restricting the temperature of the water flow. The molten polymer has been extruded from the die, and the rotating knife cuts the pellets. And then the pellets are taken out of the pelletizing chamber by the temperature-regulated water and enter the centrifugal dryer. In the dryer of the underwater pelletizing machine, the water will be drained back to the storage tank, cooled and recycled; the pellets pass through the centrifugal dryer to remove the water.
This is how we see the irreplaceable role of underwater pelletizing machine in our daily lives and industrial production. Nanjing JlEYA, the pioneer of underwater pelletizing machine producing company in China, knows that every application is special. You can go and get more information about them