








2022 CIM: Compounding Intelligent Manufacturing Conference is coming.
Nanjing Jieya team warmly welcome your visiting.
Booth no.: E10
Date: 2022.9.14-16
Address: Suzhou, China
See you~
In plastic extrusion molding equipment, the plastic extruder is usually called the main machine, while its subsequent equipment plastic extrusion molding machine is called the auxiliary machine. Plastic extruders can produce a variety of plastic products. Therefore, the plastic extrusion molding machine is one of the widely used machines in the plastics processing industry, both now and in the future. So what are the characteristics of plastic extruders? The following is a detailed introduction.
Here is the content list:
Modularity and specialization
High efficiency and multi-functionalization
Enlargement and precision
Intelligent and networked
The modular production of plastic extruders can adapt to the special requirements of different users, shorten the research and development cycle of new products, and strive for a larger market share; while specialized production can arrange the production of each system module component of extrusion molding equipment at a fixed point or even for global procurement, which is very beneficial to ensure the quality of the whole period, reduce costs and accelerate the capital turnover.
The high efficiency of plastic extruders is mainly reflected in the high output, low energy consumption, and low manufacturing cost. In terms of function, the screw plastic extruder has been used not only for extrusion molding and mixing processing of polymer materials but its use has been broadened to food, feed, electrode, explosives, building materials, packaging, pulp, ceramics, and other fields.
Achieving the large-scale plastic extruder can reduce the production cost, which is a more obvious advantage in the large twin-screw plastic pelletizing set, film blowing set, pipe extrusion set, etc. National key construction services required for major technical equipment, large-scale ethylene project supporting one of the three key equipment of large extrusion pelletizing unit long-term dependence on imports, so we must accelerate the localization process to meet the development needs of the petrochemical industry.
Plastic extruders in developed countries have generally used modern electronic and computer control technology, the entire extrusion process parameters such as melt pressure and temperature, the temperature of each section of the body, the main screw and feeding screw speed, feeding volume, the ratio of various raw materials, motor current and voltage and other parameters for online detection, and the use of microcomputer closed-loop control. This is extremely beneficial to ensure the stability of process conditions and improve the precision of products.
If you need to buy a plastic extruder, you can consider our cost-effective products. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
The development and application of twin screw extruders are increasingly eye-catching. Many aspects of the performance of single and twin screw extruders that dominate the extrusion industry can no longer meet the requirements of blending, filling, reinforcement, toughening and other modifications.
What is the structure of the twin screw extruder?
How does the twin screw extruder prevent material degradation?
What are the structural characteristics of the twin screw extruder?
The twin screw extruder, a unique modular screw block is designed on the screw shaft, which is broken three times within a pitch, called a mixing screw block. Corresponding to these gaps, there are three rows of mixing blocks arranged on the inner sleeve of the barrel. The pin and the screw reciprocate in the axial direction at the same time in the process of radial rotation. The twin screw extruder moves in the axial direction once every time it rotates. Due to this special movement mode and the effect of mixing and sorting screws and pins, the material is not only sheared between the mixing pins and the irregular trapezoidal mixing blocks. And it is transported back and forth. The countercurrent movement of the material adds a very useful axial mixing movement to the radial mixing. The melt is continuously cut, turned, kneaded and stretched, and the twin screw extruder regularly interrupts the simple Layered shear mixing.
Due to the simultaneous mixing in the radial and axial directions of the twin screw extruder, the mixing effect is enhanced and the best dispersion mixing and distributed mixing are ensured, so the homogenization time is short. In addition, the mutual engagement of the mixing pin and the screw block also improves the self-cleaning ability of the barrel. The twin screw extruder can ensure stable working pressure through proper screw block combination, without uncontrollable pressure and temperature fluctuations, and prevent material degradation in the barrel.
1. The main machine barrel and screw are assembled by building blocks
The barrel of the twin screw extruder is composed of multiple sets of open and closed barrels. The split barrel can be opened quickly and conveniently for easy cleaning and maintenance; the screw is composed of various mixing sleeves on the mandrel Composed of screw block and conveying screw block. The barrel and screw can be flexibly formed into an ideal form according to different types of materials and different technological requirements.
2. Unique design of gear box and swing box
The twin screw extruder realizes the axial reciprocating movement of the screw while rotating. Every time the screw rotates, it reciprocates once, and the thread is interrupted three times, thus producing a strong mixing effect. The mixing effect is in the axial direction rather than the radial direction, and occurs between the thread and the pin. All materials in the screw channel are subjected to uniform shear stress, instead of a thin layer of material being sheared.
Great products begin with the best engineering staff, and Nanjing JlEYA is ready to assist you with your technical requirements for twin screw extruder.
A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
Nanjing Team sincerely invite you to attend The 15th China Chongqing Rubber, Plastics Industry Exhibition.
Our booth no.: S2544
Time: May 27-30, 2021
Address: Chongqing International Expo Center
Wish to meet you at there ;)
The high efficiency of the single-screw extruderis mainly reflected in high output, low energy consumption, and low manufacturing cost. In terms of function, the plastic extruder has been used not only for extrusion molding and mixing processing of polymer materials but its use has been broadened to food, feed, electrode, building materials, packaging, ceramics, and other fields. So how to operate the single screw extruder? The following is a detailed introduction.
Here is the content list:
Preparation work before starting the machine
Start-up operation
Stop operation
1. For single-screw extruder extrusion production of materials, should meet the required drying requirements, if necessary, further drying.
2. According to the variety of products, size, select the head specifications, the machine will be installed in the order of the column, installed head flange, die body, mouth die, porous plate, and filter network.
3. Connect the compressed air pipe, install the core mold electric heating rod head heating ring, check the water system.
4. Adjust the gap evenly in all parts of the mouth die and check whether the centerline of the main machine and the auxiliary machine are aligned.
5. Start the single-screw extruder of each running equipment, check whether the operation is normal, and find faults in time to eliminate.
6. Turn on the electric heater, the head, body, and auxiliary machine evenly heated up, to be the temperature of each part than the normal production temperature of about 10 degrees, constant temperature of 30 ~ 60 minutes so that the machine temperature inside and outside the same.
Start-up is an important part of the production, poor control will damage the screw and head, the temperature is too high will cause plastic decomposition, the temperature is too low will damage the screw, barrel, and head. The start-up steps are as follows.
1. Start the machine at low speed, idle, check the screw for any abnormalities and motor, amperage meter current no overload phenomenon, the pressure gauge is normal. Machine idling should not be too long to prevent the screw and barrel-scraping grinding.
2. Gradually add a small amount of material, wait for the material extrusion out of the die, before the normal addition of material. Before the plastic is extruded, no one should be in front of the mouth die to prevent casualties.
3. After the plastic is extruded, it is necessary to lead the extruded material slowly on the cooling and shaping, traction equipment, and start this equipment beforehand. Then, according to the control instrument indication value and the requirements of the extruded products, each link will be properly adjusted until the extrusion operation reaches the normal state.
4. Cutting and sampling, checking whether the appearance meets the requirements, whether the size meets the standard, quickly testing the performance, and then adjusting the extrusion process according to the requirements of quality, so that the products meet the standard requirements.
1. Stop feeding, extrude the plastic in the single screw extruder and turn off the power of the barrel and head for the next operation.
2. Shut off the power of the main machine and the auxiliary machines at the same time.
3. Open the head connection flange, clean the porous plate and various parts of the head, when cleaning, should use copper rods, copper pieces, after cleaning, apply a little oil. Screw, barrel clean up, if necessary, the screw from the end of the machine out of the top, clean up after recovery, in general, available for the transition of material cleanup.
4. Extrusion of polyolefin plastics, usually in the extruder full load shutdown (with material shutdown), when the air should be prevented from entering the barrel, so as not to oxidize the material and affect the quality of the product when continuing production. For polyvinyl chloride plastics, can also stop with material, then close the material door, reduce the temperature at the head connection body (flange) 10 ~ 20 degrees, to stop the machine after the material squeeze net.
5. Close the total power and cooling water main valve.
If you still have questions, you can consult our company. Our company's website is https://www.njjyextrusion.com/
A plastic extruder performs all of the following processes through a barrel with a screw and auger channel. The plastic pellets enter the barrel through a hopper at one finish of the barrel and are then transferred through the screw to the opposite finish of the barrel. What are the working principle and molding principles of a plastic extruder? The following is a detailed description.
Here is the content list:
Working principle
Forming principle
Pressure and shearing, etc., convert the solid plastic into a uniform and consistent melt and send the melt to the next process. The production of the melt involves processes such as mixing additives such as masterbatches, blending resins, and re-crushing. The finished melt must be homogeneous in consistency and temperature. The pressurization must be high enough to extrude the viscous polymer.
To have sufficient pressure, the depth of the threads on the screw decreases as the distance to the hopper increases. The external heating and the internal heat generated in the plastic and the screw due to friction softens and melts the plastic. The design requirements for plastic extruders often vary from polymer to polymer and from application to application. Many options involve discharge ports, multiple loading ports, special mixing devices along the screw, cooling and heating of the melt with or without an external heat source (adiabatic plastic extruders), the relative size of the gap variation between the screw and the barrel, and the number of screws. For example, twin-screw plastic extruders allow for more thorough mixing of the melt than single-screw plastic extruders. Tandem extrusion uses the melt-extruded from the first plastic extruder as feedstock for the second plastic extruder, which is typically used to produce extruded polyethylene foam.
D L the characteristic dimensions of plastic extruders are the diameter of the screw (D) and the ratio of the length of the screw (L) to the diameter D L/D (D) (L/D. Plastic extruders usually consist of at least three segments. The first section, near the L/D) filling hopper, is the filling section. Its function is to allow the material to enter the plastic extruder at a relatively smooth rate. In general, this section will be kept at a relatively low temperature to avoid clogging the charging channels. The second section is the compression section, where the melt is formed and the pressure is increased. The transition from the charging section to the compression section can be abrupt or gradual (gentle). The last half, the metering section, is adjacent to the plastic extruder outlet and its main operate is that the uniformity of the fabric flowing out of the plastic extruder. In this section, the material should have sufficient residence time to ensure uniformity of composition and temperature.
At the end of the barrel, the plastic melt leaves the plastic extruder through a head that is designed in an ideal shape for the extruded melt stream to pass through.
Another important part is the drive mechanism of the plastic extruder. It controls the rotational speed of the screw, which determines the output of the plastic extruder. The power required is determined by the viscosity (flow resistance) of the polymer. The viscosity of the polymer depends on the temperature and flow rate and decreases with increasing temperature and shear. Plastic extruders are equipped with screens that keep impurities out of the screen. To avoid downtime, the screens should be able to be changed automatically. This is especially important when processing resin with impurities, such as recycled material. The extruder's screw is divided into feeding section, plasticizing, melting section, temperature according to the process parameters of the plastic particles, the model according to the diameter of the screw 20, 36, 52, 65, 75, 95, 120, 135. Plastic particles heated by the movement of the screw to change the original state, there are many types, depending on the specific application. The capacity of the frequency conversion is proportional to the diameter of the screw and then adjusted according to the different raw materials.
The extrusion method of plastic extruders generally refers to the melting of plastic at a high temperature of about 200°C. The melted plastic is then passed through a die to form the desired shape. Extrusion molding requires a deep understanding of the characteristics of plastics and extensive experience in mold design and is a technically demanding molding method.
Extrusion molding is a method of a continuous flow of material through a die by heating and pressurizing in an extruder, also known as "extrusion molding". Compared with other molding methods, it has the advantages of high efficiency and low unit cost.
Extrusion is mainly used for molding thermoplastics, but it can also be used for some thermosets. Extruded products are continuous profiles, such as tubes, rods, wires, sheets, films, wire, and cable cladding, etc. In addition, it can also be used for mixing, plasticizing and granulating, coloring, blending, etc. plastics.
The extruded products can be called "profiles", which are also called "profiles" because of their irregular cross-sectional shape.