








With the development of modern industry, the underwater pelletizing machine has become an important production equipment used in all aspects of production.
What is the working principle of the underwater pelletizing machine?
What is the operating procedure of the underwater pelletizing machine?
What are the reasons why people choose underwater pelletizing machine?
The material using the underwater pelletizing machine will pass through the feeding port, and under the action of the rotating screw, it will be rolled into a dough and roll forward along the screw groove. Due to the shear, compression and agitation of the screw, the material will be further mixed and plasticized. , The temperature and pressure gradually increase, showing a state of viscous flow, and passing through the machine head with a certain pressure and temperature, and finally a product of the desired shape is obtained.
(1) Check the rotation direction of the impeller of the underwater pelletizing machine. From the feed inlet, the impeller should turn counterclockwise, otherwise the motor connection should be adjusted.
(2) The starting sequence of the underwater pelletizing machine and the material conveying equipment is as follows:
Discharge belt conveyor→PL vertical impact crusher→feeding belt conveyor
The crusher must be started without load, and the material can only be fed after the crusher is running normally.
(3) The feed size is strictly in accordance with the feed size specified by the various models. It is forbidden to enter the underwater pelletizing machine with the size of the material larger than the specified size, otherwise it will cause the impeller imbalance and excessive wear of the impeller, and even block the impeller flow path and The central feed pipe prevents the crusher from working normally. When a large piece of material is found, it should be removed in time.
(4) When the discharge belt conveyor stops running, the feeding should be stopped immediately, so the discharge belt conveyor should be interlocked with the feeding system to open and stop. Otherwise, the impeller will be crushed and the motor will be burnt.
(5) The feeding of the underwater pelletizing machine should be uniform and continuous.
(6) During the operation of the underwater pelletizing machine, there must be no violent vibration or abnormal noise, otherwise, it should be stopped immediately for inspection, and the machine can only be driven in order after the fault is removed.
(7) The observation door should be sealed tightly during the working process of the underwater pelletizing machine.
The difference between the underwater pelletizing machine and other similar products is that it has a steady stream of water flowing through the mold surface, and it is in direct contact with the mold surface. The size of the pelletizing chamber is just enough to allow the pelletizing knife to rotate freely across the die surface without restricting the temperature of the water flow. The molten polymer has been extruded from the die, and the rotating knife cuts the pellets. And then the pellets are taken out of the pelletizing chamber by the temperature-regulated water and enter the centrifugal dryer. In the dryer of the underwater pelletizing machine, the water will be drained back to the storage tank, cooled and recycled; the pellets pass through the centrifugal dryer to remove the water.
This is how we see the irreplaceable role of underwater pelletizing machine in our daily lives and industrial production. Nanjing JlEYA, the pioneer of underwater pelletizing machine producing company in China, knows that every application is special. You can go and get more information about them
The main system of the plastic extruder is the extrusion system, which includes screw, barrel, hopper, head, and die. The plastic is plasticized into a uniform melt by the extrusion system and is continuously extruded from the head by the screw under the pressure established in the process. The following are details about the plastic extruder extrusion system introduction.
Here is the content list:
Screw
Barrel
Hopper
Head and mold.
The screw is the most important part of the extruder, which is directly related to the application range and productivity of the extruder and is made of high-strength and corrosion-resistant alloy steel.
The barrel is a metal cylinder, generally made of heat-resistant, high-pressure strength, strong wear-resistant, corrosion-resistant alloy steel or composite steel tube lined with alloy steel. The barrel and the screw cooperate to realize the crushing, softening, melting, plasticizing, exhausting, and compacting of the plastic, and to continuously and evenly deliver the rubber to the molding system. Generally, the length of the barrel is 15-30 times its diameter, so that the plastic is fully heated and fully plasticized as a principle.
The bottom of the hopper is equipped with a cut-off device to adjust and cut off the material flow, and the side of the hopper is equipped with a sight hole and a calibrated measuring device.
The head is composed of alloy steel inner sleeve and carbon steel outer sleeve, the head is equipped with a molding mold, the role of the head is to transform the rotational movement of the plastic melt into a parallel linear motion, evenly and smoothly into the mold sleeve, and give the plastic to the necessary molding pressure. The plastic is plasticized and compacted in the barrel and flows through the neck of the head through a certain flow path through the porous filter plate into the forming mold of the head. The mold core and mold sleeve are properly matched to form an annular gap with decreasing cross-section so that the plastic melt forms a continuous dense tubular cladding layer around the core line. To ensure that the plastic flow channel in the head is reasonable and to eliminate the dead angle of the accumulated plastic, there is often a diversion sleeve placed, and to eliminate the pressure fluctuation of plastic extrusion, there is also a pressure equalization ring set. The head is also equipped with a die correction and adjustment device to facilitate the adjustment and correction of the concentricity of the die core and die sleeve.
The extruder head is divided into an angled head (120o angle) and a right angle head according to the angle between the head material flow direction and the screw centerline. The shell of the head is fixed to the body with bolts, the die inside the head has a die core sitting and is fixed to the head inlet port with a nut, the front of the die core seat is equipped with a die core, the die core and the center of the die core seat has a hole for passing the core line, the front of the head is equipped with an even pressure ring for equalizing the pressure, the extrusion package forming part is composed of die sleeve seat and die sleeve, the position of the die sleeve can be adjusted by bolts through the support to adjust the die sleeve to the die core The position of the die sleeve can be adjusted by bolts through support to adjust the relative position of the die sleeve to the die core, which is convenient to adjust the uniformity of the thickness of the extruded layer.
If you want to buy a plastic extruder or want to know more, you can visit our official website. Our website is https://www.njjyextrusion.com/
The single screw extruder is mainly composed of 3 parts: extrusion system, transmission system, and heating and cooling system. The following is a detailed introduction to the basic structure of the single screw extruder.
Here is the content list:
Extrusion system
Transmission system
Heating and cooling system
The main role of the extrusion system of the single-screw extruder is to melt and plasticize the polymer material to form a uniform melt, to realize the transformation from the glassy state to the viscous flow state. And in this process to establish a certain pressure, by the screw continuous extrusion delivery to the head die. Thus, the extrusion system plays an important role in the molding quality and output of the extrusion process.
The extrusion system mainly includes the feeding device, screw, and barrel, which is the most critical part of the extruder, of which the screw is the heart of the extruder, the material through the rotation of the screw in order to move in the barrel and get pressurized and part of the heat.
The drive system of a single screw extruder is usually composed of a motor, reducer, and bearing, whose role is to drive the screw and supply the torque and torque required by the screw in the extrusion process. During the extrusion process, the screw speed is required to be stable and does not change with the change of screw load to ensure the uniform quality of the product. However, in different situations, the screw is required to be able to achieve variable speed in order to achieve a machine that can adapt to the requirements of extruding different materials or products of different shapes. In most extruders, the change of screw speed is achieved by adjusting the motor speed. The drive system of the single-screw extruder is also equipped with a good lubrication system and a device for rapid braking.
The heating and cooling system of a single screw extruder consist of a heating device and cooling device, which are necessary for the extrusion process to be carried out smoothly. The heating and cooling devices must ensure that the polymer materials are melted and plasticized and the temperature conditions during the molding process meet the process requirements.
The cooling device is generally set up in the extruder barrel, screw and hopper bottom, and other parts. Barrel cooling can be water-cooled or air-cooled, air-cooled is generally used for small and medium-sized single-screw extruders; large single-screw extruders are mostly water-cooled or a combination of the two forms. The cooling device at the bottom of the hopper is mainly to strengthen the solid material conveying effect, to prevent the material particles from becoming sticky due to the heating, blocking the material mouth and thus affecting the feeding. Generally, for extruders with a screw diameter of 90mm or more and high-speed extruders, a cooling device must be installed at the bottom of the hopper.
Our company focuses on twin-screw extruders, micro twin-screw extruders, plastic extruders, parallel twin-screw extruders, and other kinds of research and development and manufacturing as the core of the isotropic rotary twin-screw compounding extruder. If you still want to know more, you can consult our company.
Nanjing Jieya Extrusion Equipment Co., Ltd. (referred to as "Jieya") was established in 2004. It has the manufacturing capacity of various types of production lines with an annual production and sales of more than 350 sets. Its comprehensive capability ranks in the forefront of the Nanjing twin screw extruders industry. The company focuses on the R&D and manufacturing of various production lines centered on co-rotating twin-screw extruders and single-screw extruders. The product applications cover compounding, modified granulation, polymerization, devolatilization, one-step molding, and recyclable resources, etc.
Project Director Mr Chen introduced that every industry has competition, but specific to a certain market segment, the competitors involved are different. Traditional physical blending and modification is the largest market for twin-screw extruders, so the competition is the most intense. For Jieya, the bio-degradable plastic market was changed greatly in 2021, and a considerable part of Jieya’s orders in 2021 also came from this market.
Mr Chen explained that the reason why bio-degradable plastics are singled out from the traditional blending and modification market is that there have been many entrants in this market in the past two years, which has led to the rapid expansion of the market scale. Therefore, from traditional compounding and extrusion to processing bio-degradable plastics, is it necessary to carry out certain technical reserves? Mr Chen said frankly that it depends on how much bio-degradable plastics companies want to achieve. Just like melt blown materials in 2020, some companies have astonishing shipments, and some companies choose to take the quality to a higher level. The bio-degradable material made by special equipment must be of higher quality.
Around 2010, Jieya began to get involved in bio-degradable-related projects. During this period, we saw the ups and downs of major companies, and also witnessed the gradual growth of some companies from small to large. Most of these surviving companies are in the bio-degradable market. They started foreign trade before they became popular, and some companies even achieved a market share of about 30% in the export of Chinese vest bags.
He also talked about some distressing points in the biodegradable market: at present, the Chinese government has not clearly stipulated the definition and criteria of "bio-degradable". For example, some regions regard photo-degradable as a kind of bio-degradable. Many people oppose this. Mr Chen said that at present, most people in the Chinese market think that 'bio-degradable' is compostable and degradable, and garbage must be sorted and recycled before composting is possible.
However, Mr Chen is still very optimistic about the development of bio-degradable plastics. Bio-degradable must be the general trend of future social development, but the specific direction remains to be verified. Jieya has a layout for the main bio-degradable plastic categories, such as targeting for many PBAT projects launched in China in the past two years, we are actively discussing with customers whether we can directly use the twin-screw extruder in the polymerization stage to directly make modified materials (without extruding PBAT raw materials). Jieya has also followed up on the project of carbon dioxide production of PPC bio-degradable materials and PGA synthesized with glycolide. At present, the bio-degradable plastics market is still developing and improving. What we need to do now is to develop the corresponding twin-screw technology with the industrial chain. Based on the accumulated experience of a large number of practical applications to continuously improve the stability of the equipment.
Under the big goal of carbon neutrality, some very big changes have taken place in industries such as home appliances and automobiles. The intuitive impact is that Jieya has recently received some projects for recycling, dismantling, and regranulating waste household appliances, as well as the crushing, recycling, and regranulation of some new energy battery shells, which is also one of the important markets for Jieya in 2021. Mr Chen said that these manufacturers have multiple production lines and large projects, but they are usually new entrants, and usually require suppliers to provide them with whole-plant project planning, so they put forward higher requirements for suppliers' project experience and service capabilities.
Fluorochemicals, another key application area for which Jieya is recognized. Fluoroplastics are also known as "plastic kings". Their corrosion resistance, solvent resistance, weather resistance and temperature resistance are relatively good, so they are often included in the field of special engineering plastics. The most well-known is the PVDF used with lithium battery binder. In 2021, Jieya also undertook some projects in this field.
Mr Chen believes that the Chinese market is developing very fast, and twin-screw extruder enterprises must keep abreast of customer needs in order to gain a foothold in the market. Therefore, Jieya is also seeking new development in the upstream links. For example, the twin-screw devolatilization extrusion unit developed to meet the growing demand of downstream customers for products with low VOC and low residue; as well as corrosion resistance and wear resistance under high temperature conditions. The extrusion unit meets the production needs of special products under severe working conditions.
The success of Nanjing Jieya in the market is inseparable from the technical advantages of its twin-screw extruder equipment: its core components are all self produced, including high-torque gearboxes, extruder barrels, extruder screw elements, screen changer, die, etc. The product quality is stable and controllable, which can meet the personalized customization needs of customers, and the delivery time is flexible. In addition, Jieya stable team has also played a huge advantage. It is said that its sales, technology, management, and after-sales teams have an average of more than 10 years of experience in the industry. They have rich industry experience and are relatively clear about the pain points of various market segments. Provide complete personalized solutions, and can also undertake large and complex complete system projects.
The twin screw extruder's standard equipment includes a sturdy base frame dedicated to housing the temperature control unit and oil lubrication system. The equipment features advanced control software for seamless integration into digital factories, ready for Industry 4.0, greatly improving ease of use. The following is a detailed description of the operating procedures of the twin screw extruder.
Here is the content list:
l Start up operation
l Stop the machine
l Precautions
Start up operation
1.Close the power main gate of the twin screw extruder.
2. Turn on the power at the operation panel: Press and hold the power button clockwise to turn and then release.
3. Set the temperature of each temperature zone: for example, a zone temperature according to the process requirements set the corresponding temperature, press the set button, and then adjust the up and down arrows to the desired temperature, press the set button.
4. Set the feeding rate: according to the process, requirements can be fed rate between 0 ~ 10 to set.
5. Set the host speed of the twin screw extruder: set the host speed between 0~30 according to the process requirements.
6. Add cooling water to the cooling tank.
7. In turn on the fan: press the operation button on the operation panel.
8. When you need to start the operation of the vacuum pump, you can start the vacuum pump.
9. Turn on the cutter switch.
1. Twin screw extruder normal stopping sequence: stop the feeder: close the vacuum line valve, open the vacuum chamber on the cover; gradually reduce the main screw speed; shut down the pelletizer and other auxiliary equipment: off the motor, each external water inlet valve.
2. Twin screw extruder emergency stop: (1) in case of an emergency need to stop the host, you can quickly press the electrical control cabinet red emergency stop button, and the host and the feed speed knob back to zero, and then the total power switch off. After eliminating the fault, you can restart the machine again in normal driving order. (2) encounter equipment automatic protection trip stop: need to set the various parameters knob to zero, and then reset the parameters, press the reset button and start the machine again.
1. The normal production of the first shift machine, be sure to first check whether the barrel, hopper seal is the original closed kind, such as changes or damage, should check the hopper, the machine inside the Jane there are no foreign objects.
2. Pay attention to the screw to start at a low speed, the air time can not exceed 3min.
3. Must pay attention to check the purity of each batch of material, do not allow any impurities mixed into the material.
4. The beginning of the material to pay attention to the first small amount, evenly added material, while paying attention to observe the current meter (torque meter) pointer changes.
For granular material, use metering to add material. When you first start to feed production, be sure to pay attention to the extruder production work overload phenomenon. After the forming die lip out of the material, and then gradually increase the screw speed as appropriate.
5. Often check the working condition of the motor carbon brush, abnormalities should be replaced or adjusted promptly.
6. The screw cleaning work is not allowed to use steel tools scraping material, the application of copper brush, shovel cleaning.
7. When the process temperature is suspected of displaying problems on the instrument, use mercury temperature, meter actual measurement of the machine Jane, and molding mold degree. Refer to the mercury temperature measured temperature, adjust the calibration instrument to show the temperature.
If you still have questions, you can consult our company. Our company's website is https://www.njjyextrusion.com/
The engineering plastic twin screw extruder consists of a transmission device, a feed device, a barrel, and a screw. The function of each component is similar to that of a single-screw extruder. The difference to the single screw extruder is that in the engineering plastic twin screw extruder two parallel snails are arranged in the "cross-section" of the material.
What is the working principle of the engineering plastic twin screw extruder?
How do you treat a engineering plastic twin screw extruder?
Why is the cooling device particularly important when using engineering plastic twin screw extruders?
From the point of view of the principle of movement, the engineering plastic twin screw extruder distinguishes between the straight and uneven, and non-foaming types.
1. Double screw extruder of technical plastic
This type of engineering plastic twin screw extruder has a low speed and a high speed. The former is mainly used for profile extraction, while the latter is used for special polymer processing operations.
(1) Tightly machined extruder. The slow-running extruder has a closely combining screw geometry, in which the spiral antenna shape of one snail closely matches the spiral antenna shape of the other snail, i.e. the conjugated snail shape.
(2) Self-cleaning extruder. The simultaneous high-speed extruder has a closely tuned spiral shape. This type of snail can be executed with a relatively small snail split so that the snail has a closed self-cleaning effect. This type of engineering plastic twin screw extruder is called a compact self-cleaning engineering plastic twin screw extruder.
The gap between the two screw edges of the closely combining, opposing engineering plastic twin screw extruder is very small (much smaller than the gap in the evenly rotating engineering plastic twin screw extruder) so those positive conveying properties can be achieved.
2. Non-reciprocating double screw extruder of technical plastic
The axis distance between the two snails of the non-foaming engineering plastic twin screw extruder is greater than the sum of the radii of the two snails.
1. After using the engineering plastic twin screw extruder for 500 hours, iron chips or other impurities from the gears are in the gearbox. Therefore, the gears should be cleaned and the gear lubricant replaced.
2. The engineering plastic twin screw extruder should carry out a comprehensive inspection of the extruder after an operating period to check the density of all snails.
3. If the double screw extruder is suddenly switched off during production, the main drive, and the heating stops, if the power supply is restored, each section of the cylinder shall be reheated to the specified temperature and kept for a specified period, before you can start the extruder.
4. If the display and the display of the engineering plastic twin screw extruder are full, check if the contact of the thermocouple, etc. is good.
After the molded plastic extrusion layer has left the engineering plastic twin screw extruder, it should be cooled and formed immediately, otherwise, it will deform under the influence of gravity. The cooling method normally uses water cooling and is divided into quick cooling and slow cooling according to the different water temperatures. Fast cooling is the direct cooling by cold water. Rapid cooling is advantageous for the design of the extruded plastic layer, but in the case of crystalline polymers, due to sudden heat cooling, it is easy to leave internal stresses in the extruded layer structure, which leads to cracks during use. Generally PVC The plastic layer is deterred. Slow cooling should reduce the inner tension of the product. Water with different temperatures is given in the cooling water tank to gradually reduce the temperature and shape of the product. The extrusion of PE and PP takes place under slow cooling, i.e. through hot water, hot water, and cold water, which is called three-stage cooling.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in twin screw extrude. If you want to get more information, just go and connect them.
When the single screw extruder is in the extrusion molding process, its extruder screw is divided into 3 sections: feeding section (feeding section), melting section (compression section), metering section (homogenization section), these three sections Correspondingly, three functional areas are composed of materials: solid conveying area, material plasticizing area, and melt conveying area. Each area has different temperature requirements, and specific problems should be analyzed in detail. The temperature of the single screw extruder will be briefly introduced below.
What is the general temperature of the solid conveying zone in a single screw extruder?
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
What is the general temperature of the melt conveying zone in a single screw extruder?
What is the general temperature of the solid conveying zone in a single screw extruder?
The temperature of the barrel in the solid conveying zone of the single screw extruder is generally controlled at 100~1400C. If the feeding temperature is too low, the solid conveying zone will be extended, reducing the length of the plasticizing zone and the melt conveying zone, which will cause poor plasticization of the single screw extruder product and affect product quality.
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
The temperature of the material plasticizing zone in the single screw extruder is controlled at 170~1900C. Controlling the vacuum degree of this section is an important process index. If the vacuum degree is low, it will affect the exhaust effect, resulting in bubbles in the pipe, and seriously reducing the mechanical properties of the pipe. In order to make the gas inside the material easily escape, the plasticization degree of the material in this section should be controlled not to be too high, and the exhaust pipe of the single screw extruder should be cleaned frequently to avoid blockage. The vacuum degree of the barrel is generally 0.08~0.09MPa.
What is the general temperature of the melt conveying zone in a single screw extruder?
The temperature of the melt conveying zone in the single screw extruder should be slightly lower, generally 160~1800C. Increasing the screw speed in this section, reducing the head resistance and increasing the pressure in the plasticizing zone are all conducive to the improvement of the conveying rate. For heat-sensitive plastics such as PVC, the residence time should not be too long in this section. The screw speed is generally 20 ~30r/min. The head of the single screw extruder is an important part of extruded product molding. Its function is to generate a higher melt pressure and make the melt shape into a desired shape. The process parameters of each part of the single screw extruder are: die connector temperature 1650C, die temperature 1700C, 1700C, 1650C, 1800C, 1900C.
This is some information related to the use of single screw extruders. The use of single screw extruders is also closely related to the quality of its products. If you need more information, please contact Nanjing JlEYA.
A single-screw extruder consists of an Archimedes screw rotating in a heated barrel. It is widely used because of its simple structure, easy manufacturing, high processing efficiency, and low price, and is the most technically mature and used type of extruder at present. The following is a detailed introduction to single-screw extruders.
Here is the content list:
The design concept of a single-screw extruder
Single-screw extruder features
Uses of single screw extruder
(1) Single-screw extruders are high-speed, high-output extrusions based on high quality, and the design concept of low-temperature plasticization ensures the extrusion of high-quality products. Two-step overall design to strengthen the plasticizing function and ensure the adjustment of high-performance extrusion.
(2) A special barrier of the single-screw extruder, integrated mixing design to ensure material mixing effect and high torque output, extra-large thrust bearing.
(3) The gears and shafts of a single screw extruder are high-strength alloy steel, carburized, ground teeth treatment, high hardness, high finish, and ultra-low noise. PLC intelligent control, the linkage between main and auxiliary machines is possible.
(4) Single screw extruder easy to monitor human-machine interface, easy to understand the processing and machine status, and the control method (temperature control instrument) can be changed as needed.
(5) The material of the single screw extruder is 38CrMoAL/A nitride treatment, which is wear-resistant. It has a combination of air-cooled and water-cooled cooling for strict temperature precision control, and the unique air inlet design makes it a perfect water-cooling device.
(6)Single screw extruder with grooved surface feeding bottom sleeve of screw barrel has enhanced feeding function, which provides a guarantee for high speed and high output extrusion.
1. Hard gearbox, AC or DC stepless drive speed regulation.
2. New screw structure, melt and mix uniformly to ensure low melt temperature and high output
3. Screw barrel material adopts nitride steel 38CrMoAIA nitride treatment, and the surface alloy treatment has higher hardness.
4. Cast copper, cast aluminum heater, air-cooled and water-cooled according to requirements.
5. Advanced electrical control system of single screw
Pipe extrusion of single-screw extruder: it is suitable for PP-R pipe, PE gas pipe, PEX cross-linked pipe, aluminum-plastic composite pipe, ABS pipe, PVC pipe, HDPE silicon core pipe, and various co-extruded composite pipes.
Sheet and plate extrusion: applicable to PVC, PET, PS, PP, PC, and other profiles and plates extrusion. Extrusion of various other plastics such as silk, rod, etc.
Profile extrusion: adjusting the extruder speed and changing the structure of the extrusion screw can be applied to the production of various plastic profiles such as PVC, polyolefin, etc. Modified pelletizing: It is suitable for blending, modifying, and enhancing pelletizing of various plastics.
Nanjing JlEYA is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder, which are widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, and other fields. After 17 years of development for many years, now we have a 20,000 square meters plant, 300+ sets of annual sales, and export to more than 60 countries.