








A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
In terms of the principle of motion, there are different types of twin-screw extruderswith isotropic and anisotropic meshing and non-meshing types. So what are the types of twin-screw extruders? And what are the application areas? The following is a detailed introduction.
Here is the content list:
l Isotropic twin-screw extruder
l Anisotropic twin-screw extruder
l Non-Engaging Twin-Screw Extruders
l SHJ-20 twin-screw laboratory extruder
l Application areas
These extruders are available at low and high speeds, the former mainly for profile extrusion, while the latter is used for special polymer processing operations.
(1) Close-meshing extruder. Low-speed extruders have a closely meshed screw geometry, where the profile of one screw is closely matched to the profile of the other screw, i.e., a conjugate screw profile.
(2) Self-cleaning extruder. High-speed co-rotating extruders have a closely matched screw-prong profile. This screw can be designed to have a fairly small screw gap so that the screw has a closed self-cleaning effect, this twin-screw extruder is called a tight self-cleaning co-rotating twin-screw extruder.
The tightly meshed anisotropic twin-screw extruder has a small gap between the two screw grooves (much smaller than that in a co-engaged twin-screw extruder) so that a positive conveying characteristic can be achieved.
The center distance between the two screws of a non-engaging twin-screw extruder is greater than the sum of the radii of the two screws.
It is suitable for universities, colleges, and scientific research laboratories for process and formula development, etc. It has the features of beautiful appearance, compact structure, easy to use and maintain, and precise control of process conditions. Gearbox homemade torque level: T/A3≤8 national standard main parts, twin-screw extruder new structure design, and hardened gear teeth of high precision grinding, to ensure that the gearbox works efficiently for a long time. Screw self-made: Screw elements with tightly meshed design, block type, can be easily replaced to suit different materials. Barrel captive: The precision grade of the twin-screw extruder can reach T6, favorable to energy saving, and the block type design makes various combinations possible.
The two main areas of application of twin-screw extruders are extrusion of thermosensitive materials such as PVC pipes and profiles and processing of special polymers such as blending, venting, chemical reactions, etc. Twin-screw extruders for profile extrusion have intermeshing screw ribs and grooves and operate at a low speed of about 10/min or less. Compared to single screws, twin-screw extruders have much better feeding and conveying performance, especially for those difficult to feed and easy to slip, such as fibrous, powdery, and greasy materials. The short and uniform material retention time, better mixing, and larger heat transfer area allow for good material temperature control, which is especially important for processing heat-sensitive materials.
If you want to buy a twin-screw extruder, you can consider our cost-effective products.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, After 17 years of development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
The extrusion technology used by the single screw extruder is making waves in the food production industry. We know that single screw extruder can mass produce enterprise products of various shapes and textures. It allows a seamless and continuous operation process, which means that this means lower costs and higher production and sales.
What are the reasons and solutions for the poor discharge or blockage of the single screw extruder head?
What is the importance of single screw extruder temperature control?
What is the importance of single screw extruder speed control?
1. Reasons: (1) A certain section of the heater does not work, and the material is poorly plasticized. (2) The operating temperature is set too low, or the molecular weight distribution of the plastic is wide and unstable. (3) There may be foreign objects in the single screw extruder that are not easy to melt.
2. Treatment method: (1) Check the heater and replace it if necessary. (2) Verify the set temperature of each section, negotiate with the technician if necessary, and increase the temperature set value. (3) Clean and check the extrusion system and head of the single screw extruder.
Temperature control refers to the temperature of the single screw extruder during plastic extrusion, including the temperature control of the barrel, die and transition body. These temperature controls are related to the viscosity of the material, the sensitivity to temperature, and the aggregation state of the polymer. In general, the temperature of the die head and transition body of single screw extruder is low for medium and low viscosity materials, and the temperature of die head and transition body for high viscosity materials is high, and the fluidity is good.
Speed control means that for single screw extrude processing, if the screw speed increases, the shear rate increases. Thermoplastic melts are mostly non-Newtonian pseudoplastic fluids, and their viscosity decreases with the increase of shear rate, and fluidity Increasing the extrusion output also increases. However, if the shear rate is too large, the melt viscosity is too low, which will cause difficulties in the production and operation of single screw extrude. At the same time, the low-viscosity melt will flow backwards under the action of the screw back pressure, and the leakage flow will increase significantly, which will affect the output to a certain extent. , Again, the screw may even slip at high speeds, so the screw speed should be controlled within a certain range. In addition, in the production process of single screw extrude, the screw speed should be kept as stable as possible to avoid fast and slow. Otherwise, it will cause uneven discharge due to excessive changes in the melt viscosity of the material, which will affect normal production.
Nanjing JlEYA is a single screw extruder manufacturer established for more than five years. We work with customers from design to completion to ensure that all technical requirements are met.
Nanjing JIEYA hereby sincerely invited you to attend 2021 China (Hainan) Degradation Exhibition.
Our booth no.: B06
Time: June 23-25
Add: Hainan International Convention and Exhibition Center
We warmly welcome your coming and look forward to cooperate with you ;)
When the single screw extruder is in the extrusion molding process, its extruder screw is divided into 3 sections: feeding section (feeding section), melting section (compression section), metering section (homogenization section), these three sections Correspondingly, three functional areas are composed of materials: solid conveying area, material plasticizing area, and melt conveying area. Each area has different temperature requirements, and specific problems should be analyzed in detail. The temperature of the single screw extruder will be briefly introduced below.
What is the general temperature of the solid conveying zone in a single screw extruder?
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
What is the general temperature of the melt conveying zone in a single screw extruder?
What is the general temperature of the solid conveying zone in a single screw extruder?
The temperature of the barrel in the solid conveying zone of the single screw extruder is generally controlled at 100~1400C. If the feeding temperature is too low, the solid conveying zone will be extended, reducing the length of the plasticizing zone and the melt conveying zone, which will cause poor plasticization of the single screw extruder product and affect product quality.
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
The temperature of the material plasticizing zone in the single screw extruder is controlled at 170~1900C. Controlling the vacuum degree of this section is an important process index. If the vacuum degree is low, it will affect the exhaust effect, resulting in bubbles in the pipe, and seriously reducing the mechanical properties of the pipe. In order to make the gas inside the material easily escape, the plasticization degree of the material in this section should be controlled not to be too high, and the exhaust pipe of the single screw extruder should be cleaned frequently to avoid blockage. The vacuum degree of the barrel is generally 0.08~0.09MPa.
What is the general temperature of the melt conveying zone in a single screw extruder?
The temperature of the melt conveying zone in the single screw extruder should be slightly lower, generally 160~1800C. Increasing the screw speed in this section, reducing the head resistance and increasing the pressure in the plasticizing zone are all conducive to the improvement of the conveying rate. For heat-sensitive plastics such as PVC, the residence time should not be too long in this section. The screw speed is generally 20 ~30r/min. The head of the single screw extruder is an important part of extruded product molding. Its function is to generate a higher melt pressure and make the melt shape into a desired shape. The process parameters of each part of the single screw extruder are: die connector temperature 1650C, die temperature 1700C, 1700C, 1650C, 1800C, 1900C.
This is some information related to the use of single screw extruders. The use of single screw extruders is also closely related to the quality of its products. If you need more information, please contact Nanjing JlEYA.
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
The development and application of twin screw extruders are increasingly eye-catching. Many aspects of the performance of single and twin screw extruders that dominate the extrusion industry can no longer meet the requirements of blending, filling, reinforcement, toughening and other modifications.
What is the structure of the twin screw extruder?
How does the twin screw extruder prevent material degradation?
What are the structural characteristics of the twin screw extruder?
The twin screw extruder, a unique modular screw block is designed on the screw shaft, which is broken three times within a pitch, called a mixing screw block. Corresponding to these gaps, there are three rows of mixing blocks arranged on the inner sleeve of the barrel. The pin and the screw reciprocate in the axial direction at the same time in the process of radial rotation. The twin screw extruder moves in the axial direction once every time it rotates. Due to this special movement mode and the effect of mixing and sorting screws and pins, the material is not only sheared between the mixing pins and the irregular trapezoidal mixing blocks. And it is transported back and forth. The countercurrent movement of the material adds a very useful axial mixing movement to the radial mixing. The melt is continuously cut, turned, kneaded and stretched, and the twin screw extruder regularly interrupts the simple Layered shear mixing.
Due to the simultaneous mixing in the radial and axial directions of the twin screw extruder, the mixing effect is enhanced and the best dispersion mixing and distributed mixing are ensured, so the homogenization time is short. In addition, the mutual engagement of the mixing pin and the screw block also improves the self-cleaning ability of the barrel. The twin screw extruder can ensure stable working pressure through proper screw block combination, without uncontrollable pressure and temperature fluctuations, and prevent material degradation in the barrel.
1. The main machine barrel and screw are assembled by building blocks
The barrel of the twin screw extruder is composed of multiple sets of open and closed barrels. The split barrel can be opened quickly and conveniently for easy cleaning and maintenance; the screw is composed of various mixing sleeves on the mandrel Composed of screw block and conveying screw block. The barrel and screw can be flexibly formed into an ideal form according to different types of materials and different technological requirements.
2. Unique design of gear box and swing box
The twin screw extruder realizes the axial reciprocating movement of the screw while rotating. Every time the screw rotates, it reciprocates once, and the thread is interrupted three times, thus producing a strong mixing effect. The mixing effect is in the axial direction rather than the radial direction, and occurs between the thread and the pin. All materials in the screw channel are subjected to uniform shear stress, instead of a thin layer of material being sheared.
Great products begin with the best engineering staff, and Nanjing JlEYA is ready to assist you with your technical requirements for twin screw extruder.
Jieya team wish you Merry Christmas and happy new year.
Thanks for old customers trust and support on our twin screw extruders machines. We always keep focusing on the quality and service. And hope to establish business relationship with all new customers. Enjoy your holidays, dear!