








The twin screw extrudernot only has the characteristics of a single-screw extruder, but also has the advantages of convenient feeding, stable extrusion, and convenient exhaust. It is widely used in the production and processing of extruded products.
Why are twin screw extruders warmly welcomed now?
Choose a single-screw extruder or a twin screw extruder?
What are the technical points of the twin screw extruder?
Why are twin screw extruders warmly welcomed now?
The twin screw extruder can not only add more ingredients to the company's products, but also can choose to quickly complete the manufacturing. Considering that "new crown pneumonia" has put every industry into trouble, the market has been looking for a quick turnaround to pay for healthy food. In addition, you may need to make up for the loss of production and sales or increase production and sales based on the current situation. Twin-screw extension can help you, and considering the lower cost and higher production and sales, it can bring more profits.
Choose a single-screw extruder or a twin screw extruder?
The single-screw extruder is used for extrusion processing technology and equipment, and the particle raw materials stay in the extruder for a long time. This means that a single-screw extruder requires a longer period than a twin screw extruder to produce the products required by the enterprise. In addition, the twin screw extruder allows you to better control the complex operation process and actual operation. As everyone knows, these controls are much more complicated. This is very important for foods that need to be mixed and mixed. The production and manufacturing facilities are complete, and the actual effect of twin-screw extrusion is the best. For polymer materials, twin-screw extrusion is also particularly effective. Considering that the design concept of twin screw extruder has a relatively large flexibility, it can be used in many industries for very specific operation processes.
What are the technical points of the twin screw extruder?
In the extrusion process of the twin screw extruder, the material is transformed from the glass state to the molten state. In addition to the balance between the heat required for plasticization of the material and the amount of heat supplied, the material is melted. Pressure is also a very important control indicator. Because the material is affected by the compression ratio of each section of the die resistance screw during the extrusion process, it does not exist under normal pressure. For different die, the compression ratio of each section of the screw is basically constant and immutable. Under the premise of the same extrusion speed, increase or decrease the feed rate, the volume of the screw material in the feeding section will change, and the volume of the material in the exhaust section will remain unchanged, so the compression section of the feeding section changes with the compression ratio, and its melt pressure follows Increase or decrease; under the premise of the same feed rate, increase or decrease the extrusion rate, the volume of the screw material in the feeding section will also change. The volume of the material in the exhaust section remains unchanged, so the compression section of the feed section changes with the compression ratio, and its melt pressure increases or decreases accordingly; the feed speed increases or decreases simultaneously with the extrusion speed, because the volume of the screw material in the feed section remains unchanged , Only due to the increase or decrease of the speed, the melt pressure change.
Due to different fields and different types of twin screw extruder, they are widely used in many industries. To meet these growing demands, Nanjing JlEYA has committed to providing the increasing of twin screw extruder.
Twin screw extruder is developed based on the single screw extruder, which has been widely used in the molding process of extruded products because of its good feeding performance, mixing and plasticizing performance, exhaust performance, and extrusion stability. So what are the advantages of a twin screw extruder? The following is a detailed introduction.
Here is the content list:
l Wear and tear
l Reduce production costs
l Increase output
l Improve labor efficiency
l High torque and high speed
Wear and tear
Since twin screw extruders are easy to open, the degree of wear of threaded elements and barrel bushings can be detected at any time, so that effective repair or replacement can be carried out. It is not necessary to find out only when there is a problem with the extruded product, which causes unnecessary waste.
Reduce production costs
When producing masterbatches on twin screw extruders, it's usually necessary to alter colors, and if a product amendment is critical, to open the open process space within several minutes, in addition to analyzing the mixing process by looking at the melt profile on the entire screw. The current common twin screw extruder needs to be cleared with a large amount of clearing material when changing colors, which is time consuming, power consuming, and a waste of raw material. The split twin screw extruder can solve this problem. When changing the color, it only takes a few minutes to quickly open the barrel for manual cleaning, so that no or less cleaning material can be used, saving costs.
Increase output
Twin screw snack extruders use side feeding technology to improve the integrity of the material and greatly increase production. The position and shape of the feed opening also have a great influence on feeding efficiency. With the same parameters, the output increases with an increase in the feed area. A rectangular cross section has a higher feed efficiency than a circular cross section for the same inlet area. The use of side by side twin screw feeds is also based on this consideration.
Improve labor efficiency
During equipment maintenance, ordinary twin screw extruders often have to remove the heating and cooling system before the screw can be withdrawn as a whole. In contrast, the split twin screw does not need to be opened by loosening a few bolts and turning the worm gearbox handle device to lift the upper half of the barrel, and then the entire barrel can be repaired. This shortens the maintenance time and reduces the labor intensity.
High torque and high speed
At present, the event trend of twin screw extruders within the world is to develop within the direction of high torsion, high speed, and low energy consumption, and also the impact of high speed is high productivity. The split twin screw extruder belongs to the current class, and its speed will reach and five hundred revolutions per minute. Therefore, its distinctive benefits in process high viscousness and warmth sensitive materials.
In the high speed, high torque core technology, asymmetric and symmetric high torque gearbox currently only Germany and Japan related manufacturers master the core technology, its speed can reach up to 1800 rpm or more, and domestic also master this core technology, such as Nanjing JlEYA extrusion company, is also currently one of the main choices of domestic high end material processing manufacturers, belongs to the domestic independent innovation national encouragement projects.
If you want to buy twin screw extruders, you can consider our cost effective products. We insist on the tenet of "quality first, customer first" and warmly welcome new and old customers to cooperate with us.
The company focuses on twin screw extruders, micro twin screw extruders, plastic extruders, parallel twin screw extruders, and other research and development and manufacturing as the core of the isotropic rotary twin screw mixing and extruding machine, the application range covers the mixing and modification of granulation, polymerization, deswelling, step molding, recycling, and other fields.
Nanjing JIEYA hereby sincerely invited you to attend 2021 China (Hainan) Degradation Exhibition.
Our booth no.: B06
Time: June 23-25
Add: Hainan International Convention and Exhibition Center
We warmly welcome your coming and look forward to cooperate with you ;)
The main machine of the plastic extruder is the extruder, which is composed of an extrusion system, transmission system, and heating and cooling system. The following is a detailed description of the composition of the plastic extruder.
Here is the content list:
Extrusion system
Drive System
Heating and cooling device
A homogeneous melt is plasticized bypassing the plastic through the extrusion system, which consists of a screw, barrel, hopper, head, and die.
The function of the drive system is to drive the screw, supplying the torque and speed required by the screw during the extrusion process, usually consisting of an electric motor, reducer, and bearings.
The manufacturing cost of the reducer is roughly proportional to its size and weight, provided that the structure is the same. Because the shape and weight of the reducer are large, it means that more materials are consumed in the manufacturing, and the bearings used are also larger, which increases the manufacturing cost.
For a similar screw diameter extruder, the high speed and high potency extruder consume additional energy than the traditional extruder, the motor power is doubled, and also the reducer seat range is raised consequently is critical,however a high screw speed means that an occasional reduction magnitude relation. For the same size reducer, the gear modulus of the low reduction ratio increases compared to the large reduction ratio, and the capacity of the reducer to bear the load also increases. Therefore, the rise in volume and weight of the reducer isn't linearly proportional to the rise in motor power. If the extrusion volume is employed because of the divisor and dividend by the burden of the reducer, the high speed and high potency extruder can have a smaller range and the normal extruder will have a larger number.
In terms of unit output, the small motor power and the small weight of the reducer of the high speed and high-efficiency extruder means that the manufacturing cost per unit output of the high speed and high-efficiency extruder is lower than that of the normal extruder.
Heating and cooling are necessary to enable the plastic extrusion process to proceed.
(1) Extruders usually use electric heating, which is divided into resistance heating and induction heating, with heating sheets installed in each part of the body, neck, and head. The heating device heats the plastic inside the barrel from the outside to warm it up to the temperature required for the process operation.
(2) The cooling device is installed to ensure that the plastic is in the temperature range required for the process. Specifically, it is to exclude the excess heat generated by the shear friction of the rotating screw to avoid the plastic from decomposing, scorching, or shaping difficulties due to the high temperature. Barrel cooling is divided into two kinds of water-cooled and air-cooled, generally small and medium-sized extrusion machine using air-cooled is more appropriate, large is more water-cooled or a combination of two forms of cooling; screw cooling is mainly used in the center of water-cooled, the purpose is to increase the rate of solid material delivery, stabilize the amount of rubber, while improving product quality; but the cooling at the hopper, one is to strengthen the role of solid material delivery, to prevent the plastic grain sticky blockage because of the heating the second is to ensure the normal work of the transmission part.
If you are engaged in the industry related to the extruder, you can consider our cost-effective products. Our company is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder in China.
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
PVC compounding extruder is made by mixing PVC resin with stabilizers, lubricants, and other additives through granulation and then extrusion, or by using powder in one extrusion. what are the application areas of PVC? The following are the details.
Here is the content list:
General soft products
PVC film
PVC foam products
PVC coated products
PVC paste resin
PVC transparent sheet
PVC rigid sheet
Other applications of PVC
General soft products can be extruded into cables, wires, and hoses by the extruder: shoe soles, slippers, various plastic sandals, as well as toys and auto parts by the injection molding machine with various molds.
PVC film After mixing and plasticizing PVC with additives, transparent or colored film of specified thickness can be made by using a three-roller or four-roller calendar, and calendered film can be processed by this method. It can also be cut and heat laminated to process raincoats, tablecloths, curtains, packaging bags, inflatable toys, etc. The wide transparent film can be used for greenhouse, plastic shed, and ground film; the film stretched in both directions can be used for shrink packaging due to its characteristics of shrinkage by heat.
Soft PVC can be used as sandals, insoles, foam slippers, and shockproof and cushioning packaging materials. In addition, it can also be extruded into low-foaming hard PVC sheets and profiles by extruder, which is a new type of building material and can be used as a substitute for wood.
Artificial leather with backing is made by coating PVC paste on cloth or paper and then plasticizing it at 100 degrees Celsius or above (or PVC and additives can be calendered into film and then pressed together with backing); while artificial leather without backing is directly calendered by calender into soft sheet with a certain thickness and then pressed with the pattern. It can be used to make leather bags, leather boxes, book covers, sofas, and car cushions, etc. It can also be made into flooring leather, which is used as the flooring material for buildings.
PVC emulsion or micro-suspension resin is dispersed in a liquid plasticizer to make it swell and plasticize into the plasticized sol, and then add stabilizer, filler, coloring agent, etc. After full stirring for de-bubbling, PVC paste is prepared, and then processed into various products such as coat hangers, tool handles, Christmas trees, etc. by casting, impregnating, or laminating processes.
Impact modifier and organotin stabilizer are added to PVC, which is mixed, plasticized, and calendered into transparent sheets. Then it can be made into thin-walled transparent containers by thermoforming and can be used for vacuum blister packaging such as moon cake boxes, etc. It is an excellent packaging material and decoration material.
PVC hard sheet and plate After adding stabilizer, lubricant, and filler to PVC and mixing, it can be extruded into various caliber hard pipes, shaped pipes, corrugated pipes, and other products by using an extruder, and used as a downpipe, drinking water pipe, electric wire casing or staircase handrail, etc.; the calendered sheet can be overlapped and hot-pressed to make various thicknesses of hard sheets, which can be cut into various desired shapes and can be welded into various chemical resistant tanks, ducts and containers by using PVC welding rod with hot air, etc.
PVC can be processed into rigid profiles using an extruder and used for window and door assembly. In some countries, the doors and windows assembled by PVC rigid profile have occupied the market of windows and doors together with wooden windows and doors, aluminum windows, etc.
If you want to buy PVC compounding extruder, you can consult our company, our company's website is https://www.njjyextrusion.com/
The high efficiency of the single-screw extruderis mainly reflected in high output, low energy consumption, and low manufacturing cost. In terms of function, the plastic extruder has been used not only for extrusion molding and mixing processing of polymer materials but its use has been broadened to food, feed, electrode, building materials, packaging, ceramics, and other fields. So how to operate the single screw extruder? The following is a detailed introduction.
Here is the content list:
Preparation work before starting the machine
Start-up operation
Stop operation
1. For single-screw extruder extrusion production of materials, should meet the required drying requirements, if necessary, further drying.
2. According to the variety of products, size, select the head specifications, the machine will be installed in the order of the column, installed head flange, die body, mouth die, porous plate, and filter network.
3. Connect the compressed air pipe, install the core mold electric heating rod head heating ring, check the water system.
4. Adjust the gap evenly in all parts of the mouth die and check whether the centerline of the main machine and the auxiliary machine are aligned.
5. Start the single-screw extruder of each running equipment, check whether the operation is normal, and find faults in time to eliminate.
6. Turn on the electric heater, the head, body, and auxiliary machine evenly heated up, to be the temperature of each part than the normal production temperature of about 10 degrees, constant temperature of 30 ~ 60 minutes so that the machine temperature inside and outside the same.
Start-up is an important part of the production, poor control will damage the screw and head, the temperature is too high will cause plastic decomposition, the temperature is too low will damage the screw, barrel, and head. The start-up steps are as follows.
1. Start the machine at low speed, idle, check the screw for any abnormalities and motor, amperage meter current no overload phenomenon, the pressure gauge is normal. Machine idling should not be too long to prevent the screw and barrel-scraping grinding.
2. Gradually add a small amount of material, wait for the material extrusion out of the die, before the normal addition of material. Before the plastic is extruded, no one should be in front of the mouth die to prevent casualties.
3. After the plastic is extruded, it is necessary to lead the extruded material slowly on the cooling and shaping, traction equipment, and start this equipment beforehand. Then, according to the control instrument indication value and the requirements of the extruded products, each link will be properly adjusted until the extrusion operation reaches the normal state.
4. Cutting and sampling, checking whether the appearance meets the requirements, whether the size meets the standard, quickly testing the performance, and then adjusting the extrusion process according to the requirements of quality, so that the products meet the standard requirements.
1. Stop feeding, extrude the plastic in the single screw extruder and turn off the power of the barrel and head for the next operation.
2. Shut off the power of the main machine and the auxiliary machines at the same time.
3. Open the head connection flange, clean the porous plate and various parts of the head, when cleaning, should use copper rods, copper pieces, after cleaning, apply a little oil. Screw, barrel clean up, if necessary, the screw from the end of the machine out of the top, clean up after recovery, in general, available for the transition of material cleanup.
4. Extrusion of polyolefin plastics, usually in the extruder full load shutdown (with material shutdown), when the air should be prevented from entering the barrel, so as not to oxidize the material and affect the quality of the product when continuing production. For polyvinyl chloride plastics, can also stop with material, then close the material door, reduce the temperature at the head connection body (flange) 10 ~ 20 degrees, to stop the machine after the material squeeze net.
5. Close the total power and cooling water main valve.
If you still have questions, you can consult our company. Our company's website is https://www.njjyextrusion.com/
The special refining effect and excellent performance of the single screw extruder have been proved in practice. Practice has proved that the reciprocating single-screw mixing extruder is a new type of plastic extrusion equipment. The emergence of single screw extruder provides a high-performance plastic processing equipment for the majority of users. Made a huge contribution to the development of the plastics industry.
What is the function of the single screw extruder operation screen?
What is the significance of the emergence of a single screw extruder?
What are the application fields of single screw extruder?
The operating panel is installed above the single screw extruder and can be rotated within 60 degrees for easy operation. There is a power indicator and emergency stop button on the right side of the touch screen. In an emergency, press the emergency stop button to stop immediately, which is used to protect the safety of the operator and the single screw extruder. The data recording, parameter setting, operation control and other operations of the entire instrument are all completed in this operation screen.
In the process of polymer processing, in order to give the polymer certain processing characteristics or to give the product specific use performance, it is often necessary to blend different polymers or blend the polymer with various additives and pigments. The single-screw extruder has the characteristics of uniform shearing, high dispersion, high filling, and stretching of the melt. And it combines the advantages of single and twin screw extruders. The unique working principle, coupled with a complete set of threaded components and supporting equipment, makes it more widely used. On a single screw extruder, it can achieve mixing, Mixing, plasticizing, dispersing, shearing, stretching, degassing, and granulation make the interface area of the melt flow in the machine far larger than the general shear flow.
The reciprocating single-screw mixing extruder is a new type of plastic mixing processing equipment, which is widely used in the filling, blending, modification, crosslinking, grafting, color masterbatch, functional masterbatch, and resistance of various plastics. Production of fuel masterbatch, conductive material, degradable masterbatch, reinforcement, toughening and other special plastic materials.
Blending different types of polymers to obtain brand new polymer alloys with specific uses.
Various mineral fillers are added to the polymer melt to make high-filling materials with excellent performance and low price.
Production of various glass fiber reinforced and flame retardant products, with the addition of glass fiber up to 50%.
It is suitable for the production of various cable sheathing materials, insulating materials, cross-linking materials, semiconductors, shielding materials, and conductive materials.
Production of thermoplastic elastomers and hot melt adhesives.
The single screw extruder is increasingly used in industrial production.Nanjing JlEYA has committed itself to offering the best-suited single screw extruders at a reasonable price, and all that is necessary to meet the needs of the customer.