








underwater pelletizing machine plays an irreplaceable role in the current industrial production process. Only when the underwater pelletizing machine is used correctly can the greatest effect be achieved.
What problems should be paid attention to when using underwater pelletizing machine?
What is the cause of the friction clutch failure of the underwater pelletizing machine and its solution?
How can the underwater pelletizing machine make the pellets cut out by pelletizing have no pores?
1. Pay attention to the temperature change of the underwater pelletizing machine at any time. When touching the sliver with clean hands, the temperature should be raised immediately. Until the sliver touches your hand, it is normal.
2. When the bearing part of the reducer burns, or is accompanied by noise, it should be repaired in time and refueled.
3. When the bearing parts at both ends of the bearing chamber of the underwater pelletizing machine are hot or there is noise, stop the machine for maintenance and add butter. During normal operation, add butter to the bearing chamber every 5-6 days.
4. Pay attention to the operating rules of the underwater pelletizing machine; such as: the machine temperature is high or low, the speed is fast or slow, and it can be dealt with in time according to the situation.
5. When the operation of the underwater pelletizing machine is unstable, pay attention to check whether the gap of the coupling anastomosis is too tight, and adjust it in time to loosen it.
Reason analysis: The instantaneous starting voltage of the main motor of the underwater pelletizing machine is too low, the friction disc and the friction disc are overheated, the friction disc and the friction disc are aging, and the air pressure of the friction disc is too low, etc., which can cause the clutch to disengage.
Solution: When starting the main motor of the underwater pelletizing machine, avoid peak power consumption and reduce the feeding load. The minimum restart interval is 30 minutes; in summer, when the main motor is restarted more than twice, it should be extended. Interval time or forced cooling with a fan. Blow with instrument wind and wipe off the dirt on the surface of the friction plate and friction plate with a rag. If the underwater pelletizing machine wears a lot or the surface becomes "vitrified", replace the friction plate and friction plate. Confirm whether the air pressure value can make the friction disc and the friction plate fit together.
One: The different materials used by the underwater pelletizing machine must be separated clearly;
Two: The products produced by the underwater pelletizing machine should be dewatered as much as possible after being crushed and cleaned;
Three: The vent hole on the screw of the underwater pelletizing machine should be unblocked.
Nanjing JlEYA has various underwater pelletizing machines that can provide the increasing of products, and make them more effective, reliable, and consistent.
DRIVE SECTION
The drive section of the twin screw extruder consists of 3 parts: motor, clutch, and gearbox.
The reduction and distribution gear unit reduces the motor speed to the screw shaft speed and distributes the input torque to the two output shafts. Clutch is installed between the drive motor and the gearbox drive shaft.
PROCESSING SECTION
The processing section of the twin screw extruder in SHJ series extruder consists of individual barrel sections which are replaceable. Depending on the process tasks, reserve feed port, liquid injection port or twin screw side feed port is available.
Owing to the modular design of the twin screw extruder screw elements and screw barrels, conveying, plasticizing, homogenizing, pressure build-up and devolatilization zones can be established, depending on the process task.
For product intake and conveying, screw elements are used. The extruder can be fed with powder, pellets, chips, melt, paste, etc.
Plasticizing, mixing and dispersing are done by the twin screw extruder kneading elements. By varying the thickness of the kneading disks and their angle of stagger, their mixing, shearing and dispersing action can be adjusted to the individual requirements.
The screw elements are arranged on screw shafts. The co-rotating and closely intermeshing screw shafts have a sealing profile.
The screw barrels are supported by barrel supports. Axial displacement of the processing section resulting from thermal dilatation is absorbed by these supports.
EXTRUSION PART
The discharge section of the twin screw extruder consists of die head and screen changer, which is installed at the end of twin screw extruder discharging direction. There are several types of die heads and screen changers to meet the requirements of different polymers and processing technology.
A plastic extruder performs all of the following processes through a barrel with a screw and auger channel. The plastic pellets enter the barrel through a hopper at one finish of the barrel and are then transferred through the screw to the opposite finish of the barrel. What are the working principle and molding principles of a plastic extruder? The following is a detailed description.
Here is the content list:
Working principle
Forming principle
Pressure and shearing, etc., convert the solid plastic into a uniform and consistent melt and send the melt to the next process. The production of the melt involves processes such as mixing additives such as masterbatches, blending resins, and re-crushing. The finished melt must be homogeneous in consistency and temperature. The pressurization must be high enough to extrude the viscous polymer.
To have sufficient pressure, the depth of the threads on the screw decreases as the distance to the hopper increases. The external heating and the internal heat generated in the plastic and the screw due to friction softens and melts the plastic. The design requirements for plastic extruders often vary from polymer to polymer and from application to application. Many options involve discharge ports, multiple loading ports, special mixing devices along the screw, cooling and heating of the melt with or without an external heat source (adiabatic plastic extruders), the relative size of the gap variation between the screw and the barrel, and the number of screws. For example, twin-screw plastic extruders allow for more thorough mixing of the melt than single-screw plastic extruders. Tandem extrusion uses the melt-extruded from the first plastic extruder as feedstock for the second plastic extruder, which is typically used to produce extruded polyethylene foam.
D L the characteristic dimensions of plastic extruders are the diameter of the screw (D) and the ratio of the length of the screw (L) to the diameter D L/D (D) (L/D. Plastic extruders usually consist of at least three segments. The first section, near the L/D) filling hopper, is the filling section. Its function is to allow the material to enter the plastic extruder at a relatively smooth rate. In general, this section will be kept at a relatively low temperature to avoid clogging the charging channels. The second section is the compression section, where the melt is formed and the pressure is increased. The transition from the charging section to the compression section can be abrupt or gradual (gentle). The last half, the metering section, is adjacent to the plastic extruder outlet and its main operate is that the uniformity of the fabric flowing out of the plastic extruder. In this section, the material should have sufficient residence time to ensure uniformity of composition and temperature.
At the end of the barrel, the plastic melt leaves the plastic extruder through a head that is designed in an ideal shape for the extruded melt stream to pass through.
Another important part is the drive mechanism of the plastic extruder. It controls the rotational speed of the screw, which determines the output of the plastic extruder. The power required is determined by the viscosity (flow resistance) of the polymer. The viscosity of the polymer depends on the temperature and flow rate and decreases with increasing temperature and shear. Plastic extruders are equipped with screens that keep impurities out of the screen. To avoid downtime, the screens should be able to be changed automatically. This is especially important when processing resin with impurities, such as recycled material. The extruder's screw is divided into feeding section, plasticizing, melting section, temperature according to the process parameters of the plastic particles, the model according to the diameter of the screw 20, 36, 52, 65, 75, 95, 120, 135. Plastic particles heated by the movement of the screw to change the original state, there are many types, depending on the specific application. The capacity of the frequency conversion is proportional to the diameter of the screw and then adjusted according to the different raw materials.
The extrusion method of plastic extruders generally refers to the melting of plastic at a high temperature of about 200°C. The melted plastic is then passed through a die to form the desired shape. Extrusion molding requires a deep understanding of the characteristics of plastics and extensive experience in mold design and is a technically demanding molding method.
Extrusion molding is a method of a continuous flow of material through a die by heating and pressurizing in an extruder, also known as "extrusion molding". Compared with other molding methods, it has the advantages of high efficiency and low unit cost.
Extrusion is mainly used for molding thermoplastics, but it can also be used for some thermosets. Extruded products are continuous profiles, such as tubes, rods, wires, sheets, films, wire, and cable cladding, etc. In addition, it can also be used for mixing, plasticizing and granulating, coloring, blending, etc. plastics.
The extruded products can be called "profiles", which are also called "profiles" because of their irregular cross-sectional shape.
Each type of product in the plastic extruder line has its operating characteristics, and a detailed understanding of its operating characteristics is necessary to give full play to the effectiveness of the machine. The following is a detailed description of the operating procedures and maintenance methods for plastic extruders.
Here is the content list:
Operation procedures
Maintenance methods
The plastic extruder is one of the machine types, master the extruder operation points, the correct and reasonable use of a plastic extruder. The use of plastic screw extruder includes a series of links such as installation, adjustment, commissioning, operation, maintenance, and repair of the machine, and its use has the commonality of general machines, mainly in the drive motor and reduction and speed change device. However, the working system of the plastic screw extruder, the extrusion system, is unique, and special attention should be paid to its characteristics when using the plastic screw extruder. Extruder manuals generally have clear provisions for the installation, adjustment, and commissioning of the machine, here the main points of the operation, maintenance, and repair of the plastic screw extruder are briefly described as follows: in particular, to correctly grasp the structural characteristics of the screw, heating and cooling management instrumentation characteristics and assembly, the correct extrusion process conditions, the correct operation of the machine.
1.Pastic extruder equipment should be placed in a ventilated position to ensure that the heat of the motor work prolongs its life; the machine should be kept well grounded.
⒉Regularly check the tool screws, the plastic extruder after 1 hour of use, with tools to tighten the moving knife, fixed knife screws, to strengthen the fixed between the blade and the knife frame; should be regularly filled with lubricating oil to ensure the lubrication between the bearings; to ensure the sharpness of the cutting edge of the tool, should always check the tool to ensure its sharpness, to reduce unnecessary damage to other parts caused by the blunt lack of the blade; regularly check whether the belt is loose, and timely tightening.
3. Restart - Before starting the plastic extruder for the second time, the remaining debris in the machine chamber should be cleared to reduce the starting resistance. Periodically open the inertia cover and pulley cover to clear the ash outlet under the flange, which can cause the powder to enter the shaft bearing.
4. Replacement parts - When replacing knives, the clearance between the moving and fixed knives should be 0.8 MM for crushers over 20 HP and 0.5 MM for crushers under 20 HP. The thinner the recycled material is, the gap can be adjusted appropriately larger.
If you need to know more, you can consult our company. The company focused on co-rotating twin-screw compounding extruders with the core of the various R&D and manufacturing, such as a twin-screw extruder, mini twin screw extruder, plastic extruder, parallel twin-screw extruder, and so on, the application covers compounding mixing modified granulation, polymerization, devolatilization, step molding, renewable recycling, and other fields.
The plastic extruder is a common plastic machinery equipment, in the process of the daily operation of the extruder, the extruder will have a variety of failures, affecting the normal production of plastic machinery, the following we will analyze the extruder failure.
Here is the content list:
Unstable host current
The main motor can not start
The head is not discharged smoothly or blocked
The main electric starting current is too high
The main motor makes an abnormal sound
1. Production reasons.
(1) Uneven feeding.
(2) The main motor bearing of the plastic extruder is damaged or poorly lubricated.
(3) A section of the heater is out of order and does not heat up.
(4) The screw adjustment pad is not correct, or the phase is not correct, and the component interferes.
2. Treatment methods.
(1) Check the feeder, troubleshooting.
(2) Overhaul the main motor of the plastic extruder, replace the bearings if necessary.
(3) Check whether each heater is working properly, replace the heater if necessary.
(4) Check the adjustment pad, pull out the screw to check whether there is interference with the screw.
1. Causes.
(1) There is a mistake in the start-up procedure of the plastic extruder.
(2) The main motor thread has a problem, whether the fuse is burned ring.
(3) The main motor-related chain device to function
2. Treatment methods.
(1) Check the program, reboot the machine in the correct boot sequence.
(2) Check the main motor circuit.
(3) Check whether the lube oil pump of the plastic extruder is started and check the status of the chain device associated with the main motor. The oil pump is not on and the motor cannot be turned on.
(4) The inverter induction power has not been discharged. Turn off the main power and wait for 5 minutes before starting again.
(5) Check whether the emergency button is reset.
1. Causes.
(1) A section of the heater does not work, and the material is not plasticized well.
(2) The operating temperature setting is low, or the molecular weight distribution of plastic is wide and unstable.
(3) There may be foreign substances that do not melt easily.
2. Treatment methods.
(1) Check the heater of the plastic extruder and replace it if necessary.
(2) Verify the set temperature of each section, and if necessary, consult with the technician to increase the temperature setting.
(3) Clean and check the extrusion system and the head.
1. Causes.
(1) Insufficient heating time and high torque.
(2) A section of the heater does not work.
2. Treatment methods.
(1) Apply hand pan machine when starting, if not easy, extend the heating time or check whether each section heater is working properly.
1. Produced by.
(1) The main motor bearing of the plastic extruder is damaged.
(2) The main motor silicon controlled rectifier line in silicon controlled damage.
2. Treatment methods.
(1) Replace the main motor bearings.
(2) Check the silicon-controlled rectifier circuit, if necessary, replace the silicon-controlled components.
Our company's website is https://www.njjyextrusion.com/. If you still have questions, you can contact us on the official website.
The underwater pelletizing machine is a smart machine with a touch screen, supports touch input, and is equipped with an Android system. The main engine of the underwater pelletizing machine is an extruder, which consists of an extrusion system, a transmission system and a heating and cooling system.
What are the possible failures of the underwater pelletizing machine and their solutions?
What are the advantages of the underwater pelletizing machine?
What are the applicable materials for the underwater pelletizing machine?
Cause analysis: underwater pelletizing machine cutter wears excessively or the cutter blade is damaged, the particle water flow is too low, the pelletizer vibration is too large, the cutter and the template are not tightly attached, the material melt index fluctuates, and the discharge flow rate is inconsistent. Excessive water temperature and other reasons can cause the shutdown of the underwater pelletizing system and cause the interlocking shutdown of the entire unit.
Solution: After stopping the underwater pelletizing machine, visually check whether the cutting edge of the cutting knife is excessively worn or damaged. If so, replace the cutting knife completely. Check and confirm whether the granular water leaks internally, whether the filter and cooler of the granular water tank are blocked. If they are blocked, they should be cleaned manually; check whether the inlet and outlet pressures of the granular water pump are normal. If not, check the valves on the granular water pump and the pump pipeline. Check whether the alignment between the cutter shaft and the underwater pelletizing machine is out of tolerance, whether the bearing assembly of the cutter shaft is damaged, and whether the cutter rotor is out of balance. During operation, check whether there is any gap in the contact between the four moving wheels of the pelletizing trolley and the guide rail. Control the volatile matter in the polypropylene powder and eliminate the vibration of the cutter and cutter shaft when it flows through the template hole. Reduce the temperature of the hot oil at the template of the underwater pelletizing machine, check the temperature distribution of the cylinder and the template, and whether the flow, pressure and temperature of the cooling water of the cylinder are normal; confirm the time setting for the "water, knife, material" to reach the template to prevent particles The water reaches the template prematurely and freezes the template hole. After closing the head of the underwater pelletizing machine, the feed volume should be quickly increased to the set load of the extruder.
The underwater pelletizing machine is a new model for pelletizing plastic materials that are elastic, easy to foam at low temperature, difficult to form, and have poor flow properties. The underwater pelletizing machine breaks through the traditional method of stranding pelletizing in the past. It overcomes the shortcomings of instability, uneven particles, easy agglomeration, and low output during the granulation of elastomer raw materials.
The underwater pelletizing machine is suitable for EVA, TPU and other materials with high viscosity and high viscosity of elastomers, and also suitable for conventional materials such as PP, PE, ABS, PA, and PC.
The widespread use of underwater pelletizing machines has continuously increased the demand for them in the market. Nanjing JlEYA, as a Chinese pioneer in underwater pelletizing machine, can ensure the machines’ quality and after-sales service.
The twin screw extrudernot only has the characteristics of a single-screw extruder, but also has the advantages of convenient feeding, stable extrusion, and convenient exhaust. It is widely used in the production and processing of extruded products.
Why are twin screw extruders warmly welcomed now?
Choose a single-screw extruder or a twin screw extruder?
What are the technical points of the twin screw extruder?
Why are twin screw extruders warmly welcomed now?
The twin screw extruder can not only add more ingredients to the company's products, but also can choose to quickly complete the manufacturing. Considering that "new crown pneumonia" has put every industry into trouble, the market has been looking for a quick turnaround to pay for healthy food. In addition, you may need to make up for the loss of production and sales or increase production and sales based on the current situation. Twin-screw extension can help you, and considering the lower cost and higher production and sales, it can bring more profits.
Choose a single-screw extruder or a twin screw extruder?
The single-screw extruder is used for extrusion processing technology and equipment, and the particle raw materials stay in the extruder for a long time. This means that a single-screw extruder requires a longer period than a twin screw extruder to produce the products required by the enterprise. In addition, the twin screw extruder allows you to better control the complex operation process and actual operation. As everyone knows, these controls are much more complicated. This is very important for foods that need to be mixed and mixed. The production and manufacturing facilities are complete, and the actual effect of twin-screw extrusion is the best. For polymer materials, twin-screw extrusion is also particularly effective. Considering that the design concept of twin screw extruder has a relatively large flexibility, it can be used in many industries for very specific operation processes.
What are the technical points of the twin screw extruder?
In the extrusion process of the twin screw extruder, the material is transformed from the glass state to the molten state. In addition to the balance between the heat required for plasticization of the material and the amount of heat supplied, the material is melted. Pressure is also a very important control indicator. Because the material is affected by the compression ratio of each section of the die resistance screw during the extrusion process, it does not exist under normal pressure. For different die, the compression ratio of each section of the screw is basically constant and immutable. Under the premise of the same extrusion speed, increase or decrease the feed rate, the volume of the screw material in the feeding section will change, and the volume of the material in the exhaust section will remain unchanged, so the compression section of the feeding section changes with the compression ratio, and its melt pressure follows Increase or decrease; under the premise of the same feed rate, increase or decrease the extrusion rate, the volume of the screw material in the feeding section will also change. The volume of the material in the exhaust section remains unchanged, so the compression section of the feed section changes with the compression ratio, and its melt pressure increases or decreases accordingly; the feed speed increases or decreases simultaneously with the extrusion speed, because the volume of the screw material in the feed section remains unchanged , Only due to the increase or decrease of the speed, the melt pressure change.
Due to different fields and different types of twin screw extruder, they are widely used in many industries. To meet these growing demands, Nanjing JlEYA has committed to providing the increasing of twin screw extruder.