








A single-screw extruder consists of an Archimedes screw rotating in a heated barrel. It is widely used because of its simple structure, easy manufacturing, high processing efficiency, and low price, and is the most technically mature and used type of extruder at present. The following is a detailed introduction to single-screw extruders.
Here is the content list:
The design concept of a single-screw extruder
Single-screw extruder features
Uses of single screw extruder
(1) Single-screw extruders are high-speed, high-output extrusions based on high quality, and the design concept of low-temperature plasticization ensures the extrusion of high-quality products. Two-step overall design to strengthen the plasticizing function and ensure the adjustment of high-performance extrusion.
(2) A special barrier of the single-screw extruder, integrated mixing design to ensure material mixing effect and high torque output, extra-large thrust bearing.
(3) The gears and shafts of a single screw extruder are high-strength alloy steel, carburized, ground teeth treatment, high hardness, high finish, and ultra-low noise. PLC intelligent control, the linkage between main and auxiliary machines is possible.
(4) Single screw extruder easy to monitor human-machine interface, easy to understand the processing and machine status, and the control method (temperature control instrument) can be changed as needed.
(5) The material of the single screw extruder is 38CrMoAL/A nitride treatment, which is wear-resistant. It has a combination of air-cooled and water-cooled cooling for strict temperature precision control, and the unique air inlet design makes it a perfect water-cooling device.
(6)Single screw extruder with grooved surface feeding bottom sleeve of screw barrel has enhanced feeding function, which provides a guarantee for high speed and high output extrusion.
1. Hard gearbox, AC or DC stepless drive speed regulation.
2. New screw structure, melt and mix uniformly to ensure low melt temperature and high output
3. Screw barrel material adopts nitride steel 38CrMoAIA nitride treatment, and the surface alloy treatment has higher hardness.
4. Cast copper, cast aluminum heater, air-cooled and water-cooled according to requirements.
5. Advanced electrical control system of single screw
Pipe extrusion of single-screw extruder: it is suitable for PP-R pipe, PE gas pipe, PEX cross-linked pipe, aluminum-plastic composite pipe, ABS pipe, PVC pipe, HDPE silicon core pipe, and various co-extruded composite pipes.
Sheet and plate extrusion: applicable to PVC, PET, PS, PP, PC, and other profiles and plates extrusion. Extrusion of various other plastics such as silk, rod, etc.
Profile extrusion: adjusting the extruder speed and changing the structure of the extrusion screw can be applied to the production of various plastic profiles such as PVC, polyolefin, etc. Modified pelletizing: It is suitable for blending, modifying, and enhancing pelletizing of various plastics.
Nanjing JlEYA is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder, which are widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, and other fields. After 17 years of development for many years, now we have a 20,000 square meters plant, 300+ sets of annual sales, and export to more than 60 countries.
The difference between single screw extruder and twin screw extruder: one is a screw, the other is two screws. Both are driven by a motor. The power varies with different screw sizes. The power of 50 conical twin screw extruder is about 20kW, and 65 is about 37kW. The output is related to the material and the screw size. The output of 50 conical twin screw extruder is about 100-150kg/h, and 65 conical twin screw extruder is about 200-280kg/h. The output of a single screw is only half than twin screw extruder.
Extruders can be divided into single-screw, twin-screw and multi-screw extruders according to the number of screws. Today, the single-screw extruder is the most widely used and is suitable for extrusion processing of general materials. The twin-screw extruder has the characteristics of less heat generated by friction, relatively uniform shearing of the material, large conveying capacity of the screw, relatively stable extrusion volume, long residence of the material in the barrel, and uniform mixing.
The single-screw extruder occupies an important position both as a plasticizing and granulating machine or a molding and processing machine. In recent years, the single-screw extruder has made great progress. The large-scale single-screw extruder for granulation produced in Germany has a screw diameter of 700mm and an output of 36t/h.
The main sign of the development of single-screw extruder lies in the development of its key part, the screw. In recent years, people have carried out a lot of theoretical and experimental research on screws. There are nearly 100 types of screws. The common ones are separation type, shear type, barrier type, split type and wave type.
From the perspective of single-screw development, although the single-screw extruder has been relatively complete, with the continuous development of polymer materials and plastic products, new and special single-screw extruders with more characteristics will emerge. In general, single-screw extruders are developing in the direction of high speed, high efficiency and specialization.
The twin-screw extruder has good feeding characteristics, is suitable for powder processing, and has better mixing, exhaust, reaction and self-cleaning functions than single-screw extruders, and is characterized by processing plastics and blends with poor thermal stability. It shows its superiority even more.
Each type of product in the plastic extruder line has its operating characteristics, and a detailed understanding of its operating characteristics is necessary to give full play to the effectiveness of the machine. The following is a detailed description of the operating procedures and maintenance methods for plastic extruders.
Here is the content list:
Operation procedures
Maintenance methods
The plastic extruder is one of the machine types, master the extruder operation points, the correct and reasonable use of a plastic extruder. The use of plastic screw extruder includes a series of links such as installation, adjustment, commissioning, operation, maintenance, and repair of the machine, and its use has the commonality of general machines, mainly in the drive motor and reduction and speed change device. However, the working system of the plastic screw extruder, the extrusion system, is unique, and special attention should be paid to its characteristics when using the plastic screw extruder. Extruder manuals generally have clear provisions for the installation, adjustment, and commissioning of the machine, here the main points of the operation, maintenance, and repair of the plastic screw extruder are briefly described as follows: in particular, to correctly grasp the structural characteristics of the screw, heating and cooling management instrumentation characteristics and assembly, the correct extrusion process conditions, the correct operation of the machine.
1.Pastic extruder equipment should be placed in a ventilated position to ensure that the heat of the motor work prolongs its life; the machine should be kept well grounded.
⒉Regularly check the tool screws, the plastic extruder after 1 hour of use, with tools to tighten the moving knife, fixed knife screws, to strengthen the fixed between the blade and the knife frame; should be regularly filled with lubricating oil to ensure the lubrication between the bearings; to ensure the sharpness of the cutting edge of the tool, should always check the tool to ensure its sharpness, to reduce unnecessary damage to other parts caused by the blunt lack of the blade; regularly check whether the belt is loose, and timely tightening.
3. Restart - Before starting the plastic extruder for the second time, the remaining debris in the machine chamber should be cleared to reduce the starting resistance. Periodically open the inertia cover and pulley cover to clear the ash outlet under the flange, which can cause the powder to enter the shaft bearing.
4. Replacement parts - When replacing knives, the clearance between the moving and fixed knives should be 0.8 MM for crushers over 20 HP and 0.5 MM for crushers under 20 HP. The thinner the recycled material is, the gap can be adjusted appropriately larger.
If you need to know more, you can consult our company. The company focused on co-rotating twin-screw compounding extruders with the core of the various R&D and manufacturing, such as a twin-screw extruder, mini twin screw extruder, plastic extruder, parallel twin-screw extruder, and so on, the application covers compounding mixing modified granulation, polymerization, devolatilization, step molding, renewable recycling, and other fields.
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
Nanjing Jieya is a professional manufacturer of twin screw compounding extruders since 2004. Our extruders series include SHJ series, HT series, JY series, SJ series, etc. Today we will tell you the differences between SHJ series twin screw extruders and HT series high torque twin screw extruders from three main points below:
1. Torque grade
The torque rating grade of our SHJ series twin screw extruder is T/A3≤8 while HT series is 9≤T/A3≤13.5. Our HT series adopt high torque gear box, which is suitable for customers that pursuit high efficiency machines.
2. Power transmission
SHJ series use clutch for power transmission while HT series use torque protector, for example, R+W brand, Bibby brand, etc.
3. Output
The output of HT series twin screw extruder is much higher than SHJ series.
So HT series can further improve the performance of extruders.But surely, price is higher than SHJ series.
The screw can be said to be the heart of the injection molding machine. The quality of the screw determines the quality of the product. The plasticizing screw of the engineering plastic twin screw extruder has the functions of conveying, melting, mixing, compression, metering and exhausting. It plays an important role in the quality of plasticization and is a key factor affecting the quality of plasticization.
What is the difference between engineering plastic twin screw extruder and single screw extruder?
What are the characteristics of engineering plastic twin screw extruder?
What are the structural principles of engineering plastic twin screw extruder?
1. Price: single screw extruder has simple structure and low price; Engineering plastic twin screen expander is complex and expensive
2. Plasticizing capacity: single screw extruder is suitable for plasticizing and extruding polymers and granular materials. The shear degradation of polymer is small, but the residence time of material in extruder is long; The engineering plastic twin screw extruder has good mixing and plasticizing ability, and the residence time of materials in the extruder is short, which is suitable for powder processing.
3. In terms of processing capacity and energy consumption: the engineering plastic twin screw extruder has large output, fast extrusion speed and low energy consumption per unit output, while the single screw extruder is poor.
4. Operability: the single screw extruder is easy to operate and the process control is simple; The operation of engineering plastic twin screen expander is relatively complex and the process control requirements are high.
1. engineering plastic twin screw extruder is divided into parallel and conical according to the relative position of the two axes;
2. engineering plastic twin screw extruder is divided into meshing type and non-meshing type according to the two screw meshing procedures;
3. engineering plastic twin screw extruder is divided into the same direction and the opposite direction according to the rotation direction of the two screws, and there are inward and outward points in the opposite direction;
4. engineering plastic twin screw extruder is divided into high speed and low speed according to the screw rotation speed;
5. engineering plastic twin screw extruder is divided into whole and combination according to the structure of screw and barrel.
For the basic mechanism of the engineering plastic twin screw extruder process, in simple terms, a screw rotates in the barrel and pushes the plastic forward. The screw structure is an inclined surface or slope wound on the center layer, the purpose of which is to increase the pressure in order to overcome the greater resistance. As far as the engineering plastic twin screw extruder is concerned, there are three kinds of resistance that need to be overcome during work: one is friction, which includes the friction of solid particles (feeding) against the barrel wall and the first few revolutions of the screw (feeding zone). There are two kinds of mutual friction forces; the second is the adhesion of the melt on the cylinder wall; the third is the internal logistics resistance of the melt when it is pushed forward.
Nanjing JlEYA has focused on the development and production of engineering plastic twin screw extruders for several years. And it commits to provide perfect service for every customer from all over the world.
Nanjing JIEYA attend Chinaplas 2021 held in Shenzhen. We sincerely welcome your visiting.
Our booth no.: 7Q25
Time: April 13-16, 2021
Address: Shenzhen World Exhibition Center
Look forward to meet you at there.
![]() | ![]() |
When the single screw extruder is in the extrusion molding process, its extruder screw is divided into 3 sections: feeding section (feeding section), melting section (compression section), metering section (homogenization section), these three sections Correspondingly, three functional areas are composed of materials: solid conveying area, material plasticizing area, and melt conveying area. Each area has different temperature requirements, and specific problems should be analyzed in detail. The temperature of the single screw extruder will be briefly introduced below.
What is the general temperature of the solid conveying zone in a single screw extruder?
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
What is the general temperature of the melt conveying zone in a single screw extruder?
What is the general temperature of the solid conveying zone in a single screw extruder?
The temperature of the barrel in the solid conveying zone of the single screw extruder is generally controlled at 100~1400C. If the feeding temperature is too low, the solid conveying zone will be extended, reducing the length of the plasticizing zone and the melt conveying zone, which will cause poor plasticization of the single screw extruder product and affect product quality.
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
The temperature of the material plasticizing zone in the single screw extruder is controlled at 170~1900C. Controlling the vacuum degree of this section is an important process index. If the vacuum degree is low, it will affect the exhaust effect, resulting in bubbles in the pipe, and seriously reducing the mechanical properties of the pipe. In order to make the gas inside the material easily escape, the plasticization degree of the material in this section should be controlled not to be too high, and the exhaust pipe of the single screw extruder should be cleaned frequently to avoid blockage. The vacuum degree of the barrel is generally 0.08~0.09MPa.
What is the general temperature of the melt conveying zone in a single screw extruder?
The temperature of the melt conveying zone in the single screw extruder should be slightly lower, generally 160~1800C. Increasing the screw speed in this section, reducing the head resistance and increasing the pressure in the plasticizing zone are all conducive to the improvement of the conveying rate. For heat-sensitive plastics such as PVC, the residence time should not be too long in this section. The screw speed is generally 20 ~30r/min. The head of the single screw extruder is an important part of extruded product molding. Its function is to generate a higher melt pressure and make the melt shape into a desired shape. The process parameters of each part of the single screw extruder are: die connector temperature 1650C, die temperature 1700C, 1700C, 1650C, 1800C, 1900C.
This is some information related to the use of single screw extruders. The use of single screw extruders is also closely related to the quality of its products. If you need more information, please contact Nanjing JlEYA.