








The engineering plastic twin screw extruder consists of a transmission device, a feed device, a barrel, and a screw. The function of each component is similar to that of a single-screw extruder. The difference to the single screw extruder is that in the engineering plastic twin screw extruder two parallel snails are arranged in the "cross-section" of the material.
What is the working principle of the engineering plastic twin screw extruder?
How do you treat a engineering plastic twin screw extruder?
Why is the cooling device particularly important when using engineering plastic twin screw extruders?
From the point of view of the principle of movement, the engineering plastic twin screw extruder distinguishes between the straight and uneven, and non-foaming types.
1. Double screw extruder of technical plastic
This type of engineering plastic twin screw extruder has a low speed and a high speed. The former is mainly used for profile extraction, while the latter is used for special polymer processing operations.
(1) Tightly machined extruder. The slow-running extruder has a closely combining screw geometry, in which the spiral antenna shape of one snail closely matches the spiral antenna shape of the other snail, i.e. the conjugated snail shape.
(2) Self-cleaning extruder. The simultaneous high-speed extruder has a closely tuned spiral shape. This type of snail can be executed with a relatively small snail split so that the snail has a closed self-cleaning effect. This type of engineering plastic twin screw extruder is called a compact self-cleaning engineering plastic twin screw extruder.
The gap between the two screw edges of the closely combining, opposing engineering plastic twin screw extruder is very small (much smaller than the gap in the evenly rotating engineering plastic twin screw extruder) so those positive conveying properties can be achieved.
2. Non-reciprocating double screw extruder of technical plastic
The axis distance between the two snails of the non-foaming engineering plastic twin screw extruder is greater than the sum of the radii of the two snails.
1. After using the engineering plastic twin screw extruder for 500 hours, iron chips or other impurities from the gears are in the gearbox. Therefore, the gears should be cleaned and the gear lubricant replaced.
2. The engineering plastic twin screw extruder should carry out a comprehensive inspection of the extruder after an operating period to check the density of all snails.
3. If the double screw extruder is suddenly switched off during production, the main drive, and the heating stops, if the power supply is restored, each section of the cylinder shall be reheated to the specified temperature and kept for a specified period, before you can start the extruder.
4. If the display and the display of the engineering plastic twin screw extruder are full, check if the contact of the thermocouple, etc. is good.
After the molded plastic extrusion layer has left the engineering plastic twin screw extruder, it should be cooled and formed immediately, otherwise, it will deform under the influence of gravity. The cooling method normally uses water cooling and is divided into quick cooling and slow cooling according to the different water temperatures. Fast cooling is the direct cooling by cold water. Rapid cooling is advantageous for the design of the extruded plastic layer, but in the case of crystalline polymers, due to sudden heat cooling, it is easy to leave internal stresses in the extruded layer structure, which leads to cracks during use. Generally PVC The plastic layer is deterred. Slow cooling should reduce the inner tension of the product. Water with different temperatures is given in the cooling water tank to gradually reduce the temperature and shape of the product. The extrusion of PE and PP takes place under slow cooling, i.e. through hot water, hot water, and cold water, which is called three-stage cooling.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in twin screw extrude. If you want to get more information, just go and connect them.
The underwater pelletizing machine is a smart machine with a touch screen, supports touch input, and is equipped with an Android system. The main engine of the underwater pelletizing machine is an extruder, which consists of an extrusion system, a transmission system and a heating and cooling system.
What are the possible failures of the underwater pelletizing machine and their solutions?
What are the advantages of the underwater pelletizing machine?
What are the applicable materials for the underwater pelletizing machine?
Cause analysis: underwater pelletizing machine cutter wears excessively or the cutter blade is damaged, the particle water flow is too low, the pelletizer vibration is too large, the cutter and the template are not tightly attached, the material melt index fluctuates, and the discharge flow rate is inconsistent. Excessive water temperature and other reasons can cause the shutdown of the underwater pelletizing system and cause the interlocking shutdown of the entire unit.
Solution: After stopping the underwater pelletizing machine, visually check whether the cutting edge of the cutting knife is excessively worn or damaged. If so, replace the cutting knife completely. Check and confirm whether the granular water leaks internally, whether the filter and cooler of the granular water tank are blocked. If they are blocked, they should be cleaned manually; check whether the inlet and outlet pressures of the granular water pump are normal. If not, check the valves on the granular water pump and the pump pipeline. Check whether the alignment between the cutter shaft and the underwater pelletizing machine is out of tolerance, whether the bearing assembly of the cutter shaft is damaged, and whether the cutter rotor is out of balance. During operation, check whether there is any gap in the contact between the four moving wheels of the pelletizing trolley and the guide rail. Control the volatile matter in the polypropylene powder and eliminate the vibration of the cutter and cutter shaft when it flows through the template hole. Reduce the temperature of the hot oil at the template of the underwater pelletizing machine, check the temperature distribution of the cylinder and the template, and whether the flow, pressure and temperature of the cooling water of the cylinder are normal; confirm the time setting for the "water, knife, material" to reach the template to prevent particles The water reaches the template prematurely and freezes the template hole. After closing the head of the underwater pelletizing machine, the feed volume should be quickly increased to the set load of the extruder.
The underwater pelletizing machine is a new model for pelletizing plastic materials that are elastic, easy to foam at low temperature, difficult to form, and have poor flow properties. The underwater pelletizing machine breaks through the traditional method of stranding pelletizing in the past. It overcomes the shortcomings of instability, uneven particles, easy agglomeration, and low output during the granulation of elastomer raw materials.
The underwater pelletizing machine is suitable for EVA, TPU and other materials with high viscosity and high viscosity of elastomers, and also suitable for conventional materials such as PP, PE, ABS, PA, and PC.
The widespread use of underwater pelletizing machines has continuously increased the demand for them in the market. Nanjing JlEYA, as a Chinese pioneer in underwater pelletizing machine, can ensure the machines’ quality and after-sales service.
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
When the single screw extruder is in the extrusion molding process, its extruder screw is divided into 3 sections: feeding section (feeding section), melting section (compression section), metering section (homogenization section), these three sections Correspondingly, three functional areas are composed of materials: solid conveying area, material plasticizing area, and melt conveying area. Each area has different temperature requirements, and specific problems should be analyzed in detail. The temperature of the single screw extruder will be briefly introduced below.
What is the general temperature of the solid conveying zone in a single screw extruder?
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
What is the general temperature of the melt conveying zone in a single screw extruder?
What is the general temperature of the solid conveying zone in a single screw extruder?
The temperature of the barrel in the solid conveying zone of the single screw extruder is generally controlled at 100~1400C. If the feeding temperature is too low, the solid conveying zone will be extended, reducing the length of the plasticizing zone and the melt conveying zone, which will cause poor plasticization of the single screw extruder product and affect product quality.
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
The temperature of the material plasticizing zone in the single screw extruder is controlled at 170~1900C. Controlling the vacuum degree of this section is an important process index. If the vacuum degree is low, it will affect the exhaust effect, resulting in bubbles in the pipe, and seriously reducing the mechanical properties of the pipe. In order to make the gas inside the material easily escape, the plasticization degree of the material in this section should be controlled not to be too high, and the exhaust pipe of the single screw extruder should be cleaned frequently to avoid blockage. The vacuum degree of the barrel is generally 0.08~0.09MPa.
What is the general temperature of the melt conveying zone in a single screw extruder?
The temperature of the melt conveying zone in the single screw extruder should be slightly lower, generally 160~1800C. Increasing the screw speed in this section, reducing the head resistance and increasing the pressure in the plasticizing zone are all conducive to the improvement of the conveying rate. For heat-sensitive plastics such as PVC, the residence time should not be too long in this section. The screw speed is generally 20 ~30r/min. The head of the single screw extruder is an important part of extruded product molding. Its function is to generate a higher melt pressure and make the melt shape into a desired shape. The process parameters of each part of the single screw extruder are: die connector temperature 1650C, die temperature 1700C, 1700C, 1650C, 1800C, 1900C.
This is some information related to the use of single screw extruders. The use of single screw extruders is also closely related to the quality of its products. If you need more information, please contact Nanjing JlEYA.
Malfunctions that are caused by inadequate or improper maintenance can result in high repair costs and unnecessarily long gearbox down times. Regular servicing and inspection work are therefore imperative!
All servicing and repair work is only allowed to be performed with the gearbox stationary and by trained,authorized and appropriately instructed personnel.
Refilling lubrication oil
The oil level is to be checked regularly.It must never be below the bottom mark. In the case that the oil level drops below the minimum,it is imperative that the lubricant is topped up. The oil is only allowed to be topped up with the drive units shut down. A funnel with a filter is to be used for toppcng up (filter mesh 40um). The gearbox is always to be filled with the same type of oil as used previously It is not allowed to mix different oils or oils from different manufacturers.
Changing oil
The effectiveness of the oil reduces with increasing use due to soiling (foreign bodies and water) and chemical changes(ageing products). When the soiling and/or ageing is/are excessive, it is necessary to change the oil. Regular oil analyses provide information on the effectiveness of the gearbox oils. For larger quantities of oil it is recommended to make oil changes dependent on the results of an oil analysis.A missed oil change increases the risk of damage and can result in premature failure of the gearbox.
The first oil change should be made at approx.2500 perating hours.Subsequent oil changes depend on the state of the oil and are to be performed every 4,000 to 6,000 operating hours, however at the latest after one year.
The gear box is the core part of the twin screw extruders, we shall pay attention to its maintenance for long servicelife.
PVC compounding extruder is made by mixing PVC resin with stabilizers, lubricants, and other additives through granulation and then extrusion, or by using powder in one extrusion. what are the application areas of PVC? The following are the details.
Here is the content list:
General soft products
PVC film
PVC foam products
PVC coated products
PVC paste resin
PVC transparent sheet
PVC rigid sheet
Other applications of PVC
General soft products can be extruded into cables, wires, and hoses by the extruder: shoe soles, slippers, various plastic sandals, as well as toys and auto parts by the injection molding machine with various molds.
PVC film After mixing and plasticizing PVC with additives, transparent or colored film of specified thickness can be made by using a three-roller or four-roller calendar, and calendered film can be processed by this method. It can also be cut and heat laminated to process raincoats, tablecloths, curtains, packaging bags, inflatable toys, etc. The wide transparent film can be used for greenhouse, plastic shed, and ground film; the film stretched in both directions can be used for shrink packaging due to its characteristics of shrinkage by heat.
Soft PVC can be used as sandals, insoles, foam slippers, and shockproof and cushioning packaging materials. In addition, it can also be extruded into low-foaming hard PVC sheets and profiles by extruder, which is a new type of building material and can be used as a substitute for wood.
Artificial leather with backing is made by coating PVC paste on cloth or paper and then plasticizing it at 100 degrees Celsius or above (or PVC and additives can be calendered into film and then pressed together with backing); while artificial leather without backing is directly calendered by calender into soft sheet with a certain thickness and then pressed with the pattern. It can be used to make leather bags, leather boxes, book covers, sofas, and car cushions, etc. It can also be made into flooring leather, which is used as the flooring material for buildings.
PVC emulsion or micro-suspension resin is dispersed in a liquid plasticizer to make it swell and plasticize into the plasticized sol, and then add stabilizer, filler, coloring agent, etc. After full stirring for de-bubbling, PVC paste is prepared, and then processed into various products such as coat hangers, tool handles, Christmas trees, etc. by casting, impregnating, or laminating processes.
Impact modifier and organotin stabilizer are added to PVC, which is mixed, plasticized, and calendered into transparent sheets. Then it can be made into thin-walled transparent containers by thermoforming and can be used for vacuum blister packaging such as moon cake boxes, etc. It is an excellent packaging material and decoration material.
PVC hard sheet and plate After adding stabilizer, lubricant, and filler to PVC and mixing, it can be extruded into various caliber hard pipes, shaped pipes, corrugated pipes, and other products by using an extruder, and used as a downpipe, drinking water pipe, electric wire casing or staircase handrail, etc.; the calendered sheet can be overlapped and hot-pressed to make various thicknesses of hard sheets, which can be cut into various desired shapes and can be welded into various chemical resistant tanks, ducts and containers by using PVC welding rod with hot air, etc.
PVC can be processed into rigid profiles using an extruder and used for window and door assembly. In some countries, the doors and windows assembled by PVC rigid profile have occupied the market of windows and doors together with wooden windows and doors, aluminum windows, etc.
If you want to buy PVC compounding extruder, you can consult our company, our company's website is https://www.njjyextrusion.com/
Nanjing Jieya Extrusion Equipment Co., Ltd. (referred to as "Jieya") was established in 2004. It has the manufacturing capacity of various types of production lines with an annual production and sales of more than 350 sets. Its comprehensive capability ranks in the forefront of the Nanjing twin screw extruders industry. The company focuses on the R&D and manufacturing of various production lines centered on co-rotating twin-screw extruders and single-screw extruders. The product applications cover compounding, modified granulation, polymerization, devolatilization, one-step molding, and recyclable resources, etc.
Project Director Mr Chen introduced that every industry has competition, but specific to a certain market segment, the competitors involved are different. Traditional physical blending and modification is the largest market for twin-screw extruders, so the competition is the most intense. For Jieya, the bio-degradable plastic market was changed greatly in 2021, and a considerable part of Jieya’s orders in 2021 also came from this market.
Mr Chen explained that the reason why bio-degradable plastics are singled out from the traditional blending and modification market is that there have been many entrants in this market in the past two years, which has led to the rapid expansion of the market scale. Therefore, from traditional compounding and extrusion to processing bio-degradable plastics, is it necessary to carry out certain technical reserves? Mr Chen said frankly that it depends on how much bio-degradable plastics companies want to achieve. Just like melt blown materials in 2020, some companies have astonishing shipments, and some companies choose to take the quality to a higher level. The bio-degradable material made by special equipment must be of higher quality.
Around 2010, Jieya began to get involved in bio-degradable-related projects. During this period, we saw the ups and downs of major companies, and also witnessed the gradual growth of some companies from small to large. Most of these surviving companies are in the bio-degradable market. They started foreign trade before they became popular, and some companies even achieved a market share of about 30% in the export of Chinese vest bags.
He also talked about some distressing points in the biodegradable market: at present, the Chinese government has not clearly stipulated the definition and criteria of "bio-degradable". For example, some regions regard photo-degradable as a kind of bio-degradable. Many people oppose this. Mr Chen said that at present, most people in the Chinese market think that 'bio-degradable' is compostable and degradable, and garbage must be sorted and recycled before composting is possible.
However, Mr Chen is still very optimistic about the development of bio-degradable plastics. Bio-degradable must be the general trend of future social development, but the specific direction remains to be verified. Jieya has a layout for the main bio-degradable plastic categories, such as targeting for many PBAT projects launched in China in the past two years, we are actively discussing with customers whether we can directly use the twin-screw extruder in the polymerization stage to directly make modified materials (without extruding PBAT raw materials). Jieya has also followed up on the project of carbon dioxide production of PPC bio-degradable materials and PGA synthesized with glycolide. At present, the bio-degradable plastics market is still developing and improving. What we need to do now is to develop the corresponding twin-screw technology with the industrial chain. Based on the accumulated experience of a large number of practical applications to continuously improve the stability of the equipment.
Under the big goal of carbon neutrality, some very big changes have taken place in industries such as home appliances and automobiles. The intuitive impact is that Jieya has recently received some projects for recycling, dismantling, and regranulating waste household appliances, as well as the crushing, recycling, and regranulation of some new energy battery shells, which is also one of the important markets for Jieya in 2021. Mr Chen said that these manufacturers have multiple production lines and large projects, but they are usually new entrants, and usually require suppliers to provide them with whole-plant project planning, so they put forward higher requirements for suppliers' project experience and service capabilities.
Fluorochemicals, another key application area for which Jieya is recognized. Fluoroplastics are also known as "plastic kings". Their corrosion resistance, solvent resistance, weather resistance and temperature resistance are relatively good, so they are often included in the field of special engineering plastics. The most well-known is the PVDF used with lithium battery binder. In 2021, Jieya also undertook some projects in this field.
Mr Chen believes that the Chinese market is developing very fast, and twin-screw extruder enterprises must keep abreast of customer needs in order to gain a foothold in the market. Therefore, Jieya is also seeking new development in the upstream links. For example, the twin-screw devolatilization extrusion unit developed to meet the growing demand of downstream customers for products with low VOC and low residue; as well as corrosion resistance and wear resistance under high temperature conditions. The extrusion unit meets the production needs of special products under severe working conditions.
The success of Nanjing Jieya in the market is inseparable from the technical advantages of its twin-screw extruder equipment: its core components are all self produced, including high-torque gearboxes, extruder barrels, extruder screw elements, screen changer, die, etc. The product quality is stable and controllable, which can meet the personalized customization needs of customers, and the delivery time is flexible. In addition, Jieya stable team has also played a huge advantage. It is said that its sales, technology, management, and after-sales teams have an average of more than 10 years of experience in the industry. They have rich industry experience and are relatively clear about the pain points of various market segments. Provide complete personalized solutions, and can also undertake large and complex complete system projects.