








The composition of the single screw extruder: mainly consists of servo motor, reduction box, screw cylinder, nozzle head, filter air, heating and cooling system, touch screen, and SPS control. It is the extrusion host to form.
What are the reasons why the main engine of the single screw extruder cannot be started and the solutions?
What are the reasons and solutions for the high inlet flow of the single screw extruder?
What is the design concept of the single screw extruder?
1. Reasons:
(1) The driving program of the single screw extruder is wrong.
(2) There is a problem with the main engine thread and whether the fuse is blown.
(3) The locking device for the single screw extruder and the main engine works.
2. Treatment:
(1) Check the program of the insert extruder and restart in the correct order.
(2) Check the main engine circuit.
(3) Check whether the lubricating oil pump has started and check the status of the locking device concerning the main engine. The oil pump cannot be turned on and the engine cannot be turned on.
(4) The inverter has not discharged the induction current, turn off the main power supply and wait five minutes before starting.
(5) Check if the emergency button of the single screw extruder has been reset.
1. Reasons: (1) The single screw extruder has an insufficient heating time and a large torque. (2) A certain section of the heating does not work.
2. Treatment method: (1) Use the handwheel when driving the single screw extruder. If it is not easy, extend the heating time or check that the heaters of the individual sections work properly.
The main engine makes an abnormal noise:
1. Reasons: (1) Main engine stock damaged. (2) A specific SCR in the SCR DC power supply of the main engine is damaged.
2. Treatment method: (1) Replace the main engine stock of the single screw extruder. (2) Check the thyristor alignment and replace the thyristor component if necessary.
1. High-speed and high-Yield extrusion based on high quality.
2. The design concept of low-temperature plasticization ensures the extrusion of high-quality products.
3. The two-stage overall design of the single screw extruder reinforces the plasticization function to ensure the adjustment of the high-performance extrusion.
4. Special barrier, comprehensive mixing design to ensure the mixing effect of materials.
5. High torque drop, extra-large pressure bearing.
6. Gears and shafts are made of high-strength alloy steel, cooled, and chipped.
7. High hardness, high finish, extremely quiet.
8. PLC-intelligent control can realize the connection between main and auxiliary machines.
9. The easy-to-monitor human-machine interface makes it easy to understand the processing and machine status.
10. The control method (temperature device) can be changed if necessary.
11. The material is 38CrMoAL/A nitric treatment, wear-resistant.
12 Strict temperature control accuracy, combined with air cooling and water cooling.
13. The single screw extruder has a unique inlet design and complete water cooling.
14. An single screw extruder with a grooved surface of the lower shell has an improved feed function that guarantees a high speed and a high yield of extrusion.
The single screw extruder is increasingly used in industrial production.Nanjing JlEYA has committed itself to offering the best-suited single screw extruders at a reasonable price, and all that is necessary to meet the needs of the customer.
Nanjing Jieya is a professional manufacturer of twin screw compounding extruders since 2004. Our extruders series include SHJ series, HT series, JY series, SJ series, etc. Today we will tell you the differences between SHJ series twin screw extruders and HT series high torque twin screw extruders from three main points below:
1. Torque grade
The torque rating grade of our SHJ series twin screw extruder is T/A3≤8 while HT series is 9≤T/A3≤13.5. Our HT series adopt high torque gear box, which is suitable for customers that pursuit high efficiency machines.
2. Power transmission
SHJ series use clutch for power transmission while HT series use torque protector, for example, R+W brand, Bibby brand, etc.
3. Output
The output of HT series twin screw extruder is much higher than SHJ series.
So HT series can further improve the performance of extruders.But surely, price is higher than SHJ series.
When the single screw extruder is in the extrusion molding process, its extruder screw is divided into 3 sections: feeding section (feeding section), melting section (compression section), metering section (homogenization section), these three sections Correspondingly, three functional areas are composed of materials: solid conveying area, material plasticizing area, and melt conveying area. Each area has different temperature requirements, and specific problems should be analyzed in detail. The temperature of the single screw extruder will be briefly introduced below.
What is the general temperature of the solid conveying zone in a single screw extruder?
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
What is the general temperature of the melt conveying zone in a single screw extruder?
What is the general temperature of the solid conveying zone in a single screw extruder?
The temperature of the barrel in the solid conveying zone of the single screw extruder is generally controlled at 100~1400C. If the feeding temperature is too low, the solid conveying zone will be extended, reducing the length of the plasticizing zone and the melt conveying zone, which will cause poor plasticization of the single screw extruder product and affect product quality.
What is the general temperature in the plasticizing zone of the material in a single screw extruder?
The temperature of the material plasticizing zone in the single screw extruder is controlled at 170~1900C. Controlling the vacuum degree of this section is an important process index. If the vacuum degree is low, it will affect the exhaust effect, resulting in bubbles in the pipe, and seriously reducing the mechanical properties of the pipe. In order to make the gas inside the material easily escape, the plasticization degree of the material in this section should be controlled not to be too high, and the exhaust pipe of the single screw extruder should be cleaned frequently to avoid blockage. The vacuum degree of the barrel is generally 0.08~0.09MPa.
What is the general temperature of the melt conveying zone in a single screw extruder?
The temperature of the melt conveying zone in the single screw extruder should be slightly lower, generally 160~1800C. Increasing the screw speed in this section, reducing the head resistance and increasing the pressure in the plasticizing zone are all conducive to the improvement of the conveying rate. For heat-sensitive plastics such as PVC, the residence time should not be too long in this section. The screw speed is generally 20 ~30r/min. The head of the single screw extruder is an important part of extruded product molding. Its function is to generate a higher melt pressure and make the melt shape into a desired shape. The process parameters of each part of the single screw extruder are: die connector temperature 1650C, die temperature 1700C, 1700C, 1650C, 1800C, 1900C.
This is some information related to the use of single screw extruders. The use of single screw extruders is also closely related to the quality of its products. If you need more information, please contact Nanjing JlEYA.
Product Description
Weigh the complete feeding system (silo, feeder and bulk material) through static scales and control the discharge flow of bulk materials through variable speed motors or electric vibrators. Material is discharged from the system (via screw, vibrating tube or trough), the "loss" measured per unit of time (dv/dt) is compared to the required feed rate (preset value), the actual (measured) The difference between the flow rate and the desired (preset) flow rate generates a corrective signal through the dosing controller, which automatically adjusts the dosing rate to maintain the accurate dosing amount without process lag. When the weight measured in the silo reaches the low level of the silo (refilling), the controller will control the feeding system according to the volumetric feeding, and then the silo will be reloaded quickly (manually or automatically), and the weight loss controller will restart . In a batch loss-in-weight system, the design is similar to a continuous loss-in-weight system, however, the accuracy of the final weight of the feed (batch) cycle is higher than the actual feed amount control. The controller accomplishes fast dosing by providing a high dosing signal to the variable speed drive, then transitions to a low dosing control signal for precise control at the end of the batch. Technical parameter
Technical indicators:
Metering accuracy ≤0.5%
Ingredient accuracy ≤0.5%
Batching measurement control range 0.01-300t/h
Scope of application
Continuous stabilized soil, cement batching in concrete mixing plants, sintering quantitative control feeding, coal powder quantitative control feeding and batching of various thick slurries, etc.
Product introduction of loss-in-weight scale: the loss-in-weight feeder consists of a hopper, a feeder (single and double-shaft screw feeder), a weighing system and a regulator. During operation, the hopper, material and feeder are weighed continuously. As the material is delivered, the actual rate of weight loss is measured and compared to the desired rate of weight loss (set point). Automatically corrects for deviations from setpoint by adjusting feeder rates. Thus, the material can be fed continuously and evenly and accurately.
Applicable scope: granule, powder, calcium carbonate, talcum powder, resin film powder, flour, starch, etc. Powder gravimetric feeder: solves the problem of feeding metering and feeding with poor fluidity while pellet gravimetric feeder solve any bridging problems that may occur.
The twin screw extruder's standard equipment includes a sturdy base frame dedicated to housing the temperature control unit and oil lubrication system. The equipment features advanced control software for seamless integration into digital factories, ready for Industry 4.0, greatly improving ease of use. The following is a detailed description of the operating procedures of the twin screw extruder.
Here is the content list:
l Start up operation
l Stop the machine
l Precautions
Start up operation
1.Close the power main gate of the twin screw extruder.
2. Turn on the power at the operation panel: Press and hold the power button clockwise to turn and then release.
3. Set the temperature of each temperature zone: for example, a zone temperature according to the process requirements set the corresponding temperature, press the set button, and then adjust the up and down arrows to the desired temperature, press the set button.
4. Set the feeding rate: according to the process, requirements can be fed rate between 0 ~ 10 to set.
5. Set the host speed of the twin screw extruder: set the host speed between 0~30 according to the process requirements.
6. Add cooling water to the cooling tank.
7. In turn on the fan: press the operation button on the operation panel.
8. When you need to start the operation of the vacuum pump, you can start the vacuum pump.
9. Turn on the cutter switch.
1. Twin screw extruder normal stopping sequence: stop the feeder: close the vacuum line valve, open the vacuum chamber on the cover; gradually reduce the main screw speed; shut down the pelletizer and other auxiliary equipment: off the motor, each external water inlet valve.
2. Twin screw extruder emergency stop: (1) in case of an emergency need to stop the host, you can quickly press the electrical control cabinet red emergency stop button, and the host and the feed speed knob back to zero, and then the total power switch off. After eliminating the fault, you can restart the machine again in normal driving order. (2) encounter equipment automatic protection trip stop: need to set the various parameters knob to zero, and then reset the parameters, press the reset button and start the machine again.
1. The normal production of the first shift machine, be sure to first check whether the barrel, hopper seal is the original closed kind, such as changes or damage, should check the hopper, the machine inside the Jane there are no foreign objects.
2. Pay attention to the screw to start at a low speed, the air time can not exceed 3min.
3. Must pay attention to check the purity of each batch of material, do not allow any impurities mixed into the material.
4. The beginning of the material to pay attention to the first small amount, evenly added material, while paying attention to observe the current meter (torque meter) pointer changes.
For granular material, use metering to add material. When you first start to feed production, be sure to pay attention to the extruder production work overload phenomenon. After the forming die lip out of the material, and then gradually increase the screw speed as appropriate.
5. Often check the working condition of the motor carbon brush, abnormalities should be replaced or adjusted promptly.
6. The screw cleaning work is not allowed to use steel tools scraping material, the application of copper brush, shovel cleaning.
7. When the process temperature is suspected of displaying problems on the instrument, use mercury temperature, meter actual measurement of the machine Jane, and molding mold degree. Refer to the mercury temperature measured temperature, adjust the calibration instrument to show the temperature.
If you still have questions, you can consult our company. Our company's website is https://www.njjyextrusion.com/
Degradable plastics refer to a class of plastics whose various properties can meet the requirements of use, remain unchanged during the shelf life, and can be degraded into environmentally harmless substances under natural environment conditions after use. Therefore, it is also called environmentally degradable plastic.
There are a variety of new plastics: photodegradable plastics, biodegradable plastics, light/oxidative/biodegradable plastics, carbon dioxide-based biodegradable plastics, thermoplastic starch resin degradable plastics.
There are two main areas for the use of degradable plastics: one is the area where ordinary plastics were originally used. In these areas, the difficulty of collecting used or post-consumer plastic products will cause harm to the environment, such as agricultural mulch and single-use plastic packaging, and the second is areas where plastics are used instead of other materials. The use of degradable plastics in these areas can bring convenience, such as ball tacks for golf courses, and seedling fixing materials for tropical rainforest afforestation.
Specific applications are:
1.Agriculture, forestry and fishery, plastic film, water-retaining materials, seedling pots, seedbeds, rope nets, slow-release materials for pesticides and agricultural fertilizers.
2.Packaging industry, shopping bags, garbage bags, compost bags, disposable lunch boxes, instant noodle bowls, buffer packaging materials.
3.Sporting goods, golf tacks and tees
4.Hygiene products, women's hygiene products, baby diapers, medical mattresses, disposable haircuts.
5.Medical materials, bandages, clips, small sticks for cotton swabs, gloves, drug release materials, and surgical sutures and fracture fixation materials.
Nanjing Jieya also manufactures twin screw compounding extruder for bio-degradable material. We warmly welcome your inquiry.
The high efficiency of the single-screw extruderis mainly reflected in high output, low energy consumption, and low manufacturing cost. In terms of function, the plastic extruder has been used not only for extrusion molding and mixing processing of polymer materials but its use has been broadened to food, feed, electrode, building materials, packaging, ceramics, and other fields. So how to operate the single screw extruder? The following is a detailed introduction.
Here is the content list:
Preparation work before starting the machine
Start-up operation
Stop operation
1. For single-screw extruder extrusion production of materials, should meet the required drying requirements, if necessary, further drying.
2. According to the variety of products, size, select the head specifications, the machine will be installed in the order of the column, installed head flange, die body, mouth die, porous plate, and filter network.
3. Connect the compressed air pipe, install the core mold electric heating rod head heating ring, check the water system.
4. Adjust the gap evenly in all parts of the mouth die and check whether the centerline of the main machine and the auxiliary machine are aligned.
5. Start the single-screw extruder of each running equipment, check whether the operation is normal, and find faults in time to eliminate.
6. Turn on the electric heater, the head, body, and auxiliary machine evenly heated up, to be the temperature of each part than the normal production temperature of about 10 degrees, constant temperature of 30 ~ 60 minutes so that the machine temperature inside and outside the same.
Start-up is an important part of the production, poor control will damage the screw and head, the temperature is too high will cause plastic decomposition, the temperature is too low will damage the screw, barrel, and head. The start-up steps are as follows.
1. Start the machine at low speed, idle, check the screw for any abnormalities and motor, amperage meter current no overload phenomenon, the pressure gauge is normal. Machine idling should not be too long to prevent the screw and barrel-scraping grinding.
2. Gradually add a small amount of material, wait for the material extrusion out of the die, before the normal addition of material. Before the plastic is extruded, no one should be in front of the mouth die to prevent casualties.
3. After the plastic is extruded, it is necessary to lead the extruded material slowly on the cooling and shaping, traction equipment, and start this equipment beforehand. Then, according to the control instrument indication value and the requirements of the extruded products, each link will be properly adjusted until the extrusion operation reaches the normal state.
4. Cutting and sampling, checking whether the appearance meets the requirements, whether the size meets the standard, quickly testing the performance, and then adjusting the extrusion process according to the requirements of quality, so that the products meet the standard requirements.
1. Stop feeding, extrude the plastic in the single screw extruder and turn off the power of the barrel and head for the next operation.
2. Shut off the power of the main machine and the auxiliary machines at the same time.
3. Open the head connection flange, clean the porous plate and various parts of the head, when cleaning, should use copper rods, copper pieces, after cleaning, apply a little oil. Screw, barrel clean up, if necessary, the screw from the end of the machine out of the top, clean up after recovery, in general, available for the transition of material cleanup.
4. Extrusion of polyolefin plastics, usually in the extruder full load shutdown (with material shutdown), when the air should be prevented from entering the barrel, so as not to oxidize the material and affect the quality of the product when continuing production. For polyvinyl chloride plastics, can also stop with material, then close the material door, reduce the temperature at the head connection body (flange) 10 ~ 20 degrees, to stop the machine after the material squeeze net.
5. Close the total power and cooling water main valve.
If you still have questions, you can consult our company. Our company's website is https://www.njjyextrusion.com/
A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.