








The underwater pelletizing machine is a smart machine with a touch screen, supports touch input, and is equipped with an Android system. The main engine of the underwater pelletizing machine is an extruder, which consists of an extrusion system, a transmission system and a heating and cooling system.
What are the possible failures of the underwater pelletizing machine and their solutions?
What are the advantages of the underwater pelletizing machine?
What are the applicable materials for the underwater pelletizing machine?
Cause analysis: underwater pelletizing machine cutter wears excessively or the cutter blade is damaged, the particle water flow is too low, the pelletizer vibration is too large, the cutter and the template are not tightly attached, the material melt index fluctuates, and the discharge flow rate is inconsistent. Excessive water temperature and other reasons can cause the shutdown of the underwater pelletizing system and cause the interlocking shutdown of the entire unit.
Solution: After stopping the underwater pelletizing machine, visually check whether the cutting edge of the cutting knife is excessively worn or damaged. If so, replace the cutting knife completely. Check and confirm whether the granular water leaks internally, whether the filter and cooler of the granular water tank are blocked. If they are blocked, they should be cleaned manually; check whether the inlet and outlet pressures of the granular water pump are normal. If not, check the valves on the granular water pump and the pump pipeline. Check whether the alignment between the cutter shaft and the underwater pelletizing machine is out of tolerance, whether the bearing assembly of the cutter shaft is damaged, and whether the cutter rotor is out of balance. During operation, check whether there is any gap in the contact between the four moving wheels of the pelletizing trolley and the guide rail. Control the volatile matter in the polypropylene powder and eliminate the vibration of the cutter and cutter shaft when it flows through the template hole. Reduce the temperature of the hot oil at the template of the underwater pelletizing machine, check the temperature distribution of the cylinder and the template, and whether the flow, pressure and temperature of the cooling water of the cylinder are normal; confirm the time setting for the "water, knife, material" to reach the template to prevent particles The water reaches the template prematurely and freezes the template hole. After closing the head of the underwater pelletizing machine, the feed volume should be quickly increased to the set load of the extruder.
The underwater pelletizing machine is a new model for pelletizing plastic materials that are elastic, easy to foam at low temperature, difficult to form, and have poor flow properties. The underwater pelletizing machine breaks through the traditional method of stranding pelletizing in the past. It overcomes the shortcomings of instability, uneven particles, easy agglomeration, and low output during the granulation of elastomer raw materials.
The underwater pelletizing machine is suitable for EVA, TPU and other materials with high viscosity and high viscosity of elastomers, and also suitable for conventional materials such as PP, PE, ABS, PA, and PC.
The widespread use of underwater pelletizing machines has continuously increased the demand for them in the market. Nanjing JlEYA, as a Chinese pioneer in underwater pelletizing machine, can ensure the machines’ quality and after-sales service.
Twin screw extruder is developed based on the single screw extruder, which has been widely used in the molding process of extruded products because of its good feeding performance, mixing and plasticizing performance, exhaust performance, and extrusion stability. So what are the advantages of a twin screw extruder? The following is a detailed introduction.
Here is the content list:
l Wear and tear
l Reduce production costs
l Increase output
l Improve labor efficiency
l High torque and high speed
Wear and tear
Since twin screw extruders are easy to open, the degree of wear of threaded elements and barrel bushings can be detected at any time, so that effective repair or replacement can be carried out. It is not necessary to find out only when there is a problem with the extruded product, which causes unnecessary waste.
Reduce production costs
When producing masterbatches on twin screw extruders, it's usually necessary to alter colors, and if a product amendment is critical, to open the open process space within several minutes, in addition to analyzing the mixing process by looking at the melt profile on the entire screw. The current common twin screw extruder needs to be cleared with a large amount of clearing material when changing colors, which is time consuming, power consuming, and a waste of raw material. The split twin screw extruder can solve this problem. When changing the color, it only takes a few minutes to quickly open the barrel for manual cleaning, so that no or less cleaning material can be used, saving costs.
Increase output
Twin screw snack extruders use side feeding technology to improve the integrity of the material and greatly increase production. The position and shape of the feed opening also have a great influence on feeding efficiency. With the same parameters, the output increases with an increase in the feed area. A rectangular cross section has a higher feed efficiency than a circular cross section for the same inlet area. The use of side by side twin screw feeds is also based on this consideration.
Improve labor efficiency
During equipment maintenance, ordinary twin screw extruders often have to remove the heating and cooling system before the screw can be withdrawn as a whole. In contrast, the split twin screw does not need to be opened by loosening a few bolts and turning the worm gearbox handle device to lift the upper half of the barrel, and then the entire barrel can be repaired. This shortens the maintenance time and reduces the labor intensity.
High torque and high speed
At present, the event trend of twin screw extruders within the world is to develop within the direction of high torsion, high speed, and low energy consumption, and also the impact of high speed is high productivity. The split twin screw extruder belongs to the current class, and its speed will reach and five hundred revolutions per minute. Therefore, its distinctive benefits in process high viscousness and warmth sensitive materials.
In the high speed, high torque core technology, asymmetric and symmetric high torque gearbox currently only Germany and Japan related manufacturers master the core technology, its speed can reach up to 1800 rpm or more, and domestic also master this core technology, such as Nanjing JlEYA extrusion company, is also currently one of the main choices of domestic high end material processing manufacturers, belongs to the domestic independent innovation national encouragement projects.
If you want to buy twin screw extruders, you can consider our cost effective products. We insist on the tenet of "quality first, customer first" and warmly welcome new and old customers to cooperate with us.
The company focuses on twin screw extruders, micro twin screw extruders, plastic extruders, parallel twin screw extruders, and other research and development and manufacturing as the core of the isotropic rotary twin screw mixing and extruding machine, the application range covers the mixing and modification of granulation, polymerization, deswelling, step molding, recycling, and other fields.
The single-screw extruder has a simple design and a low price, so it is widespread and demand on the market was high.
What are the application areas and benefits of single-screw extruders?
What is the development history of the single-screw extruder?
What are the main technical parameters of the single-screw extruder?
The single-screw extruder is mainly used for extruding soft and hard polyvinyl chloride, polyethylene, and other thermoplastic. It can process a variety of plastic products such as films, tubes, plates, tapes, etc., can also be used for granulation.
The single-screw extruder is characterized by advanced design, high quality, good plasticization, and low energy consumption. It uses an evolutionary drive that is characterized by low noise development, stable operation, high load capacity, and long service life.
The single-screw extruder is one of the most important devices for the processing of plastic molding parts. It uses external energy transfer and heat transfer of external heating elements to carry out the transport of plastics solids, compaction, melting, shielding, and extrusion forms.
Since the birth of the snail extruder, it has evolved from an ordinary snail extruder to a new type of snail extruder after almost a hundred years of development. Although there are many types of new single-screw extruders, the extrusion machine is the same.
The extrusion process of the traditional snail extruder is realized by heating outside the cylinder, solid and cylinder, snail friction, and melting shear force.
"friction coefficient" and "friction force", "viscosity" and "shear tension" are the main factors influencing the performance of conventional screw extruders. The extrusion process from the machine is unstable and difficult to control, especially for some heat-sensitive plastics with poor thermal stability and high viscosity.
1. Screw diameter: refers to the diameter of the outer circle of the screw, marked with D, and the unit is millimeter (mm).
2. Proportion of screw length to diameter: refers to the ratio of the length L of the working part of the screw (the length of the threaded part, i.e. the length from the center line of the feed opening to the end of the screw) and the screw diameter D, expressed by L/D.
3. Snail speed range: refers to the highest speed of the snail up to the lowest speed of the snail; n is used to represent the speed of the snail, and the unit is revolutions per minute (U/min).
4. The power of the main screw drive engine: expressed by P, the unit is kilowatt (kW).
5. Heating performance of the extruder cylinder: expressed by E is the unit kilowatt (kV).
6. The output capacity of the extruder: expressed by Q, the unit is kilogram per hour (kg/h).
7. The height of the extruder rim: refers to the distance from the center line of the screw to the ground, expressed by H, and the unit is millimeters (mm).
8. Extruder outer dimensions: refers to total length (x) total width (x) total height expressed by L x B x H, and the unit is millimeters or meters (m m or m)
9. Extruder quality: expressed in W, the unit is kilogram or tonne (kg or t).
We can see the huge role that single-screw extruders play in the production industry, and they have become indispensable components. And Nanjing JlEYA a Chinese pioneer in single-screw extruder production,has committed to providing the most suitable single-screw extruder at a reasonable price, and whatever it takes to satisfy the customer’s needs.
Nanjing Jieya Extrusion Equipment Co., Ltd. (referred to as "Jieya") was established in 2004. It has the manufacturing capacity of various types of production lines with an annual production and sales of more than 350 sets. Its comprehensive capability ranks in the forefront of the Nanjing twin screw extruders industry. The company focuses on the R&D and manufacturing of various production lines centered on co-rotating twin-screw extruders and single-screw extruders. The product applications cover compounding, modified granulation, polymerization, devolatilization, one-step molding, and recyclable resources, etc.
Project Director Mr Chen introduced that every industry has competition, but specific to a certain market segment, the competitors involved are different. Traditional physical blending and modification is the largest market for twin-screw extruders, so the competition is the most intense. For Jieya, the bio-degradable plastic market was changed greatly in 2021, and a considerable part of Jieya’s orders in 2021 also came from this market.
Mr Chen explained that the reason why bio-degradable plastics are singled out from the traditional blending and modification market is that there have been many entrants in this market in the past two years, which has led to the rapid expansion of the market scale. Therefore, from traditional compounding and extrusion to processing bio-degradable plastics, is it necessary to carry out certain technical reserves? Mr Chen said frankly that it depends on how much bio-degradable plastics companies want to achieve. Just like melt blown materials in 2020, some companies have astonishing shipments, and some companies choose to take the quality to a higher level. The bio-degradable material made by special equipment must be of higher quality.
Around 2010, Jieya began to get involved in bio-degradable-related projects. During this period, we saw the ups and downs of major companies, and also witnessed the gradual growth of some companies from small to large. Most of these surviving companies are in the bio-degradable market. They started foreign trade before they became popular, and some companies even achieved a market share of about 30% in the export of Chinese vest bags.
He also talked about some distressing points in the biodegradable market: at present, the Chinese government has not clearly stipulated the definition and criteria of "bio-degradable". For example, some regions regard photo-degradable as a kind of bio-degradable. Many people oppose this. Mr Chen said that at present, most people in the Chinese market think that 'bio-degradable' is compostable and degradable, and garbage must be sorted and recycled before composting is possible.
However, Mr Chen is still very optimistic about the development of bio-degradable plastics. Bio-degradable must be the general trend of future social development, but the specific direction remains to be verified. Jieya has a layout for the main bio-degradable plastic categories, such as targeting for many PBAT projects launched in China in the past two years, we are actively discussing with customers whether we can directly use the twin-screw extruder in the polymerization stage to directly make modified materials (without extruding PBAT raw materials). Jieya has also followed up on the project of carbon dioxide production of PPC bio-degradable materials and PGA synthesized with glycolide. At present, the bio-degradable plastics market is still developing and improving. What we need to do now is to develop the corresponding twin-screw technology with the industrial chain. Based on the accumulated experience of a large number of practical applications to continuously improve the stability of the equipment.
Under the big goal of carbon neutrality, some very big changes have taken place in industries such as home appliances and automobiles. The intuitive impact is that Jieya has recently received some projects for recycling, dismantling, and regranulating waste household appliances, as well as the crushing, recycling, and regranulation of some new energy battery shells, which is also one of the important markets for Jieya in 2021. Mr Chen said that these manufacturers have multiple production lines and large projects, but they are usually new entrants, and usually require suppliers to provide them with whole-plant project planning, so they put forward higher requirements for suppliers' project experience and service capabilities.
Fluorochemicals, another key application area for which Jieya is recognized. Fluoroplastics are also known as "plastic kings". Their corrosion resistance, solvent resistance, weather resistance and temperature resistance are relatively good, so they are often included in the field of special engineering plastics. The most well-known is the PVDF used with lithium battery binder. In 2021, Jieya also undertook some projects in this field.
Mr Chen believes that the Chinese market is developing very fast, and twin-screw extruder enterprises must keep abreast of customer needs in order to gain a foothold in the market. Therefore, Jieya is also seeking new development in the upstream links. For example, the twin-screw devolatilization extrusion unit developed to meet the growing demand of downstream customers for products with low VOC and low residue; as well as corrosion resistance and wear resistance under high temperature conditions. The extrusion unit meets the production needs of special products under severe working conditions.
The success of Nanjing Jieya in the market is inseparable from the technical advantages of its twin-screw extruder equipment: its core components are all self produced, including high-torque gearboxes, extruder barrels, extruder screw elements, screen changer, die, etc. The product quality is stable and controllable, which can meet the personalized customization needs of customers, and the delivery time is flexible. In addition, Jieya stable team has also played a huge advantage. It is said that its sales, technology, management, and after-sales teams have an average of more than 10 years of experience in the industry. They have rich industry experience and are relatively clear about the pain points of various market segments. Provide complete personalized solutions, and can also undertake large and complex complete system projects.
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
DRIVE SECTION
The drive section of the twin screw extruder consists of 3 parts: motor, clutch, and gearbox.
The reduction and distribution gear unit reduces the motor speed to the screw shaft speed and distributes the input torque to the two output shafts. Clutch is installed between the drive motor and the gearbox drive shaft.
PROCESSING SECTION
The processing section of the twin screw extruder in SHJ series extruder consists of individual barrel sections which are replaceable. Depending on the process tasks, reserve feed port, liquid injection port or twin screw side feed port is available.
Owing to the modular design of the twin screw extruder screw elements and screw barrels, conveying, plasticizing, homogenizing, pressure build-up and devolatilization zones can be established, depending on the process task.
For product intake and conveying, screw elements are used. The extruder can be fed with powder, pellets, chips, melt, paste, etc.
Plasticizing, mixing and dispersing are done by the twin screw extruder kneading elements. By varying the thickness of the kneading disks and their angle of stagger, their mixing, shearing and dispersing action can be adjusted to the individual requirements.
The screw elements are arranged on screw shafts. The co-rotating and closely intermeshing screw shafts have a sealing profile.
The screw barrels are supported by barrel supports. Axial displacement of the processing section resulting from thermal dilatation is absorbed by these supports.
EXTRUSION PART
The discharge section of the twin screw extruder consists of die head and screen changer, which is installed at the end of twin screw extruder discharging direction. There are several types of die heads and screen changers to meet the requirements of different polymers and processing technology.
2022 Chinese Mid-autumn festival is coming.
Jieya team wish you happy mid-autumn festival and enjoy your holiday!!
The main machine of the plastic extruder is the extruder, which is composed of an extrusion system, transmission system, and heating and cooling system. The following is a detailed description of the composition of the plastic extruder.
Here is the content list:
Extrusion system
Drive System
Heating and cooling device
A homogeneous melt is plasticized bypassing the plastic through the extrusion system, which consists of a screw, barrel, hopper, head, and die.
The function of the drive system is to drive the screw, supplying the torque and speed required by the screw during the extrusion process, usually consisting of an electric motor, reducer, and bearings.
The manufacturing cost of the reducer is roughly proportional to its size and weight, provided that the structure is the same. Because the shape and weight of the reducer are large, it means that more materials are consumed in the manufacturing, and the bearings used are also larger, which increases the manufacturing cost.
For a similar screw diameter extruder, the high speed and high potency extruder consume additional energy than the traditional extruder, the motor power is doubled, and also the reducer seat range is raised consequently is critical,however a high screw speed means that an occasional reduction magnitude relation. For the same size reducer, the gear modulus of the low reduction ratio increases compared to the large reduction ratio, and the capacity of the reducer to bear the load also increases. Therefore, the rise in volume and weight of the reducer isn't linearly proportional to the rise in motor power. If the extrusion volume is employed because of the divisor and dividend by the burden of the reducer, the high speed and high potency extruder can have a smaller range and the normal extruder will have a larger number.
In terms of unit output, the small motor power and the small weight of the reducer of the high speed and high-efficiency extruder means that the manufacturing cost per unit output of the high speed and high-efficiency extruder is lower than that of the normal extruder.
Heating and cooling are necessary to enable the plastic extrusion process to proceed.
(1) Extruders usually use electric heating, which is divided into resistance heating and induction heating, with heating sheets installed in each part of the body, neck, and head. The heating device heats the plastic inside the barrel from the outside to warm it up to the temperature required for the process operation.
(2) The cooling device is installed to ensure that the plastic is in the temperature range required for the process. Specifically, it is to exclude the excess heat generated by the shear friction of the rotating screw to avoid the plastic from decomposing, scorching, or shaping difficulties due to the high temperature. Barrel cooling is divided into two kinds of water-cooled and air-cooled, generally small and medium-sized extrusion machine using air-cooled is more appropriate, large is more water-cooled or a combination of two forms of cooling; screw cooling is mainly used in the center of water-cooled, the purpose is to increase the rate of solid material delivery, stabilize the amount of rubber, while improving product quality; but the cooling at the hopper, one is to strengthen the role of solid material delivery, to prevent the plastic grain sticky blockage because of the heating the second is to ensure the normal work of the transmission part.
If you are engaged in the industry related to the extruder, you can consider our cost-effective products. Our company is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder in China.