








In terms of the principle of motion, there are different types of twin-screw extruderswith isotropic and anisotropic meshing and non-meshing types. So what are the types of twin-screw extruders? And what are the application areas? The following is a detailed introduction.
Here is the content list:
l Isotropic twin-screw extruder
l Anisotropic twin-screw extruder
l Non-Engaging Twin-Screw Extruders
l SHJ-20 twin-screw laboratory extruder
l Application areas
These extruders are available at low and high speeds, the former mainly for profile extrusion, while the latter is used for special polymer processing operations.
(1) Close-meshing extruder. Low-speed extruders have a closely meshed screw geometry, where the profile of one screw is closely matched to the profile of the other screw, i.e., a conjugate screw profile.
(2) Self-cleaning extruder. High-speed co-rotating extruders have a closely matched screw-prong profile. This screw can be designed to have a fairly small screw gap so that the screw has a closed self-cleaning effect, this twin-screw extruder is called a tight self-cleaning co-rotating twin-screw extruder.
The tightly meshed anisotropic twin-screw extruder has a small gap between the two screw grooves (much smaller than that in a co-engaged twin-screw extruder) so that a positive conveying characteristic can be achieved.
The center distance between the two screws of a non-engaging twin-screw extruder is greater than the sum of the radii of the two screws.
It is suitable for universities, colleges, and scientific research laboratories for process and formula development, etc. It has the features of beautiful appearance, compact structure, easy to use and maintain, and precise control of process conditions. Gearbox homemade torque level: T/A3≤8 national standard main parts, twin-screw extruder new structure design, and hardened gear teeth of high precision grinding, to ensure that the gearbox works efficiently for a long time. Screw self-made: Screw elements with tightly meshed design, block type, can be easily replaced to suit different materials. Barrel captive: The precision grade of the twin-screw extruder can reach T6, favorable to energy saving, and the block type design makes various combinations possible.
The two main areas of application of twin-screw extruders are extrusion of thermosensitive materials such as PVC pipes and profiles and processing of special polymers such as blending, venting, chemical reactions, etc. Twin-screw extruders for profile extrusion have intermeshing screw ribs and grooves and operate at a low speed of about 10/min or less. Compared to single screws, twin-screw extruders have much better feeding and conveying performance, especially for those difficult to feed and easy to slip, such as fibrous, powdery, and greasy materials. The short and uniform material retention time, better mixing, and larger heat transfer area allow for good material temperature control, which is especially important for processing heat-sensitive materials.
If you want to buy a twin-screw extruder, you can consider our cost-effective products.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, After 17 years of development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
2022 CIM: Compounding Intelligent Manufacturing Conference is coming.
Nanjing Jieya team warmly welcome your visiting.
Booth no.: E10
Date: 2022.9.14-16
Address: Suzhou, China
See you~
Nanjing Team sincerely invite you to attend The 15th China Chongqing Rubber, Plastics Industry Exhibition.
Our booth no.: S2544
Time: May 27-30, 2021
Address: Chongqing International Expo Center
Wish to meet you at there ;)
The main machine of the plastic extruder is the extruder, which is composed of an extrusion system, transmission system, and heating and cooling system. The following is a detailed description of the composition of the plastic extruder.
Here is the content list:
Extrusion system
Drive System
Heating and cooling device
A homogeneous melt is plasticized bypassing the plastic through the extrusion system, which consists of a screw, barrel, hopper, head, and die.
The function of the drive system is to drive the screw, supplying the torque and speed required by the screw during the extrusion process, usually consisting of an electric motor, reducer, and bearings.
The manufacturing cost of the reducer is roughly proportional to its size and weight, provided that the structure is the same. Because the shape and weight of the reducer are large, it means that more materials are consumed in the manufacturing, and the bearings used are also larger, which increases the manufacturing cost.
For a similar screw diameter extruder, the high speed and high potency extruder consume additional energy than the traditional extruder, the motor power is doubled, and also the reducer seat range is raised consequently is critical,however a high screw speed means that an occasional reduction magnitude relation. For the same size reducer, the gear modulus of the low reduction ratio increases compared to the large reduction ratio, and the capacity of the reducer to bear the load also increases. Therefore, the rise in volume and weight of the reducer isn't linearly proportional to the rise in motor power. If the extrusion volume is employed because of the divisor and dividend by the burden of the reducer, the high speed and high potency extruder can have a smaller range and the normal extruder will have a larger number.
In terms of unit output, the small motor power and the small weight of the reducer of the high speed and high-efficiency extruder means that the manufacturing cost per unit output of the high speed and high-efficiency extruder is lower than that of the normal extruder.
Heating and cooling are necessary to enable the plastic extrusion process to proceed.
(1) Extruders usually use electric heating, which is divided into resistance heating and induction heating, with heating sheets installed in each part of the body, neck, and head. The heating device heats the plastic inside the barrel from the outside to warm it up to the temperature required for the process operation.
(2) The cooling device is installed to ensure that the plastic is in the temperature range required for the process. Specifically, it is to exclude the excess heat generated by the shear friction of the rotating screw to avoid the plastic from decomposing, scorching, or shaping difficulties due to the high temperature. Barrel cooling is divided into two kinds of water-cooled and air-cooled, generally small and medium-sized extrusion machine using air-cooled is more appropriate, large is more water-cooled or a combination of two forms of cooling; screw cooling is mainly used in the center of water-cooled, the purpose is to increase the rate of solid material delivery, stabilize the amount of rubber, while improving product quality; but the cooling at the hopper, one is to strengthen the role of solid material delivery, to prevent the plastic grain sticky blockage because of the heating the second is to ensure the normal work of the transmission part.
If you are engaged in the industry related to the extruder, you can consider our cost-effective products. Our company is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder in China.
Nanjing JIEYA attend Chinaplas 2021 held in Shenzhen. We sincerely welcome your visiting.
Our booth no.: 7Q25
Time: April 13-16, 2021
Address: Shenzhen World Exhibition Center
Look forward to meet you at there.
![]() | ![]() |
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
A single-screw extruder consists of an Archimedes screw rotating in a heated barrel. It is widely used because of its simple structure, easy manufacturing, high processing efficiency, and low price, and is the most technically mature and used type of extruder at present. The following is a detailed introduction to single-screw extruders.
Here is the content list:
The design concept of a single-screw extruder
Single-screw extruder features
Uses of single screw extruder
(1) Single-screw extruders are high-speed, high-output extrusions based on high quality, and the design concept of low-temperature plasticization ensures the extrusion of high-quality products. Two-step overall design to strengthen the plasticizing function and ensure the adjustment of high-performance extrusion.
(2) A special barrier of the single-screw extruder, integrated mixing design to ensure material mixing effect and high torque output, extra-large thrust bearing.
(3) The gears and shafts of a single screw extruder are high-strength alloy steel, carburized, ground teeth treatment, high hardness, high finish, and ultra-low noise. PLC intelligent control, the linkage between main and auxiliary machines is possible.
(4) Single screw extruder easy to monitor human-machine interface, easy to understand the processing and machine status, and the control method (temperature control instrument) can be changed as needed.
(5) The material of the single screw extruder is 38CrMoAL/A nitride treatment, which is wear-resistant. It has a combination of air-cooled and water-cooled cooling for strict temperature precision control, and the unique air inlet design makes it a perfect water-cooling device.
(6)Single screw extruder with grooved surface feeding bottom sleeve of screw barrel has enhanced feeding function, which provides a guarantee for high speed and high output extrusion.
1. Hard gearbox, AC or DC stepless drive speed regulation.
2. New screw structure, melt and mix uniformly to ensure low melt temperature and high output
3. Screw barrel material adopts nitride steel 38CrMoAIA nitride treatment, and the surface alloy treatment has higher hardness.
4. Cast copper, cast aluminum heater, air-cooled and water-cooled according to requirements.
5. Advanced electrical control system of single screw
Pipe extrusion of single-screw extruder: it is suitable for PP-R pipe, PE gas pipe, PEX cross-linked pipe, aluminum-plastic composite pipe, ABS pipe, PVC pipe, HDPE silicon core pipe, and various co-extruded composite pipes.
Sheet and plate extrusion: applicable to PVC, PET, PS, PP, PC, and other profiles and plates extrusion. Extrusion of various other plastics such as silk, rod, etc.
Profile extrusion: adjusting the extruder speed and changing the structure of the extrusion screw can be applied to the production of various plastic profiles such as PVC, polyolefin, etc. Modified pelletizing: It is suitable for blending, modifying, and enhancing pelletizing of various plastics.
Nanjing JlEYA is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder, which are widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, and other fields. After 17 years of development for many years, now we have a 20,000 square meters plant, 300+ sets of annual sales, and export to more than 60 countries.
The plastic extruder is a common plastic machinery equipment, in the process of the daily operation of the extruder, the extruder will have a variety of failures, affecting the normal production of plastic machinery, the following we will analyze the extruder failure.
Here is the content list:
Unstable host current
The main motor can not start
The head is not discharged smoothly or blocked
The main electric starting current is too high
The main motor makes an abnormal sound
1. Production reasons.
(1) Uneven feeding.
(2) The main motor bearing of the plastic extruder is damaged or poorly lubricated.
(3) A section of the heater is out of order and does not heat up.
(4) The screw adjustment pad is not correct, or the phase is not correct, and the component interferes.
2. Treatment methods.
(1) Check the feeder, troubleshooting.
(2) Overhaul the main motor of the plastic extruder, replace the bearings if necessary.
(3) Check whether each heater is working properly, replace the heater if necessary.
(4) Check the adjustment pad, pull out the screw to check whether there is interference with the screw.
1. Causes.
(1) There is a mistake in the start-up procedure of the plastic extruder.
(2) The main motor thread has a problem, whether the fuse is burned ring.
(3) The main motor-related chain device to function
2. Treatment methods.
(1) Check the program, reboot the machine in the correct boot sequence.
(2) Check the main motor circuit.
(3) Check whether the lube oil pump of the plastic extruder is started and check the status of the chain device associated with the main motor. The oil pump is not on and the motor cannot be turned on.
(4) The inverter induction power has not been discharged. Turn off the main power and wait for 5 minutes before starting again.
(5) Check whether the emergency button is reset.
1. Causes.
(1) A section of the heater does not work, and the material is not plasticized well.
(2) The operating temperature setting is low, or the molecular weight distribution of plastic is wide and unstable.
(3) There may be foreign substances that do not melt easily.
2. Treatment methods.
(1) Check the heater of the plastic extruder and replace it if necessary.
(2) Verify the set temperature of each section, and if necessary, consult with the technician to increase the temperature setting.
(3) Clean and check the extrusion system and the head.
1. Causes.
(1) Insufficient heating time and high torque.
(2) A section of the heater does not work.
2. Treatment methods.
(1) Apply hand pan machine when starting, if not easy, extend the heating time or check whether each section heater is working properly.
1. Produced by.
(1) The main motor bearing of the plastic extruder is damaged.
(2) The main motor silicon controlled rectifier line in silicon controlled damage.
2. Treatment methods.
(1) Replace the main motor bearings.
(2) Check the silicon-controlled rectifier circuit, if necessary, replace the silicon-controlled components.
Our company's website is https://www.njjyextrusion.com/. If you still have questions, you can contact us on the official website.