








A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
2022 Chinese Mid-autumn festival is coming.
Jieya team wish you happy mid-autumn festival and enjoy your holiday!!
Degradable plastics refer to a class of plastics whose various properties can meet the requirements of use, remain unchanged during the shelf life, and can be degraded into environmentally harmless substances under natural environment conditions after use. Therefore, it is also called environmentally degradable plastic.
There are a variety of new plastics: photodegradable plastics, biodegradable plastics, light/oxidative/biodegradable plastics, carbon dioxide-based biodegradable plastics, thermoplastic starch resin degradable plastics.
There are two main areas for the use of degradable plastics: one is the area where ordinary plastics were originally used. In these areas, the difficulty of collecting used or post-consumer plastic products will cause harm to the environment, such as agricultural mulch and single-use plastic packaging, and the second is areas where plastics are used instead of other materials. The use of degradable plastics in these areas can bring convenience, such as ball tacks for golf courses, and seedling fixing materials for tropical rainforest afforestation.
Specific applications are:
1.Agriculture, forestry and fishery, plastic film, water-retaining materials, seedling pots, seedbeds, rope nets, slow-release materials for pesticides and agricultural fertilizers.
2.Packaging industry, shopping bags, garbage bags, compost bags, disposable lunch boxes, instant noodle bowls, buffer packaging materials.
3.Sporting goods, golf tacks and tees
4.Hygiene products, women's hygiene products, baby diapers, medical mattresses, disposable haircuts.
5.Medical materials, bandages, clips, small sticks for cotton swabs, gloves, drug release materials, and surgical sutures and fracture fixation materials.
Nanjing Jieya also manufactures twin screw compounding extruder for bio-degradable material. We warmly welcome your inquiry.
The extrusion technology used by the single screw extruder is making waves in the food production industry. We know that single screw extruder can mass produce enterprise products of various shapes and textures. It allows a seamless and continuous operation process, which means that this means lower costs and higher production and sales.
What are the reasons and solutions for the poor discharge or blockage of the single screw extruder head?
What is the importance of single screw extruder temperature control?
What is the importance of single screw extruder speed control?
1. Reasons: (1) A certain section of the heater does not work, and the material is poorly plasticized. (2) The operating temperature is set too low, or the molecular weight distribution of the plastic is wide and unstable. (3) There may be foreign objects in the single screw extruder that are not easy to melt.
2. Treatment method: (1) Check the heater and replace it if necessary. (2) Verify the set temperature of each section, negotiate with the technician if necessary, and increase the temperature set value. (3) Clean and check the extrusion system and head of the single screw extruder.
Temperature control refers to the temperature of the single screw extruder during plastic extrusion, including the temperature control of the barrel, die and transition body. These temperature controls are related to the viscosity of the material, the sensitivity to temperature, and the aggregation state of the polymer. In general, the temperature of the die head and transition body of single screw extruder is low for medium and low viscosity materials, and the temperature of die head and transition body for high viscosity materials is high, and the fluidity is good.
Speed control means that for single screw extrude processing, if the screw speed increases, the shear rate increases. Thermoplastic melts are mostly non-Newtonian pseudoplastic fluids, and their viscosity decreases with the increase of shear rate, and fluidity Increasing the extrusion output also increases. However, if the shear rate is too large, the melt viscosity is too low, which will cause difficulties in the production and operation of single screw extrude. At the same time, the low-viscosity melt will flow backwards under the action of the screw back pressure, and the leakage flow will increase significantly, which will affect the output to a certain extent. , Again, the screw may even slip at high speeds, so the screw speed should be controlled within a certain range. In addition, in the production process of single screw extrude, the screw speed should be kept as stable as possible to avoid fast and slow. Otherwise, it will cause uneven discharge due to excessive changes in the melt viscosity of the material, which will affect normal production.
Nanjing JlEYA is a single screw extruder manufacturer established for more than five years. We work with customers from design to completion to ensure that all technical requirements are met.
The single screw extruder is a special reduction power device designed for plastic and rubber single screw extruder equipment. The reducer is matched with the motor. The gear parts are made of high-strength alloy steel. The gears are processed by carburizing, quenching, and high-precision gear grinding. The gear accuracy is level 6, and the tooth surface hardness is HRC58-62.
What is the principle of single screw extruder?
What is the current industry development of single screw extruder?
What should I pay attention to when using single screw extruder?
The single screw extruder is generally divided into three sections in effective length. The effective length of the three sections is determined according to the diameter of the screw and the pitch and depth of the screw, which are generally divided into one-third of each; the last thread of the single screw extruder has been called the conveying section. It is required that it cannot be plasticized, but it must be preheated and compressed;
The second section of the single screw extruder is called the compression section. At this time, the volume of the screw groove gradually decreases, and the temperature must reach the degree of plasticization of the material. The compression produced here is from the conveying section three, and here it is compressed to one. Some machines also have Change, the plasticized material enters the third stage;
The third section of the single screw extruder is the metering section, where the material maintains the plasticizing temperature to supply the machine head, which is generally slightly higher than the plasticizing temperature.
In single screw extruder equipment, the plastic extruder is normally referred to as the main machine and the following equipment, the plastic extruder, is referred to as the auxiliary machine. After more than 100 years of development, the plastic extruder has been derived from the original single-screw extruder, a variety of models such as double-screw, multi-screw and even non-screw models have been derived. The plastic extruder (host) can be used with different plastic moulding machines such as tube, foil, holding material, monofilament, flat wire, strapping, extruding network, plate material, profile material, pelleting, cable coating, etc. are used. Suitable for different plastic extrusion production lines for the production of different plastic products. Therefore, plastic extrusion machines are today and in the future one of the most common models in the plastics processing industry.
What should I pay attention to when using single screw extruder?
(1) The material convey way of the single screw extruder mainly relies on friction, which limits its feeding performance. And it is difficult to add the powder, paste, glass fiber and inorganic fillers, so pay attention to the material used.
(2) When the pressure of the single screw extruder head is high, the reverse flow will increase and the productivity will decrease. Therefore, always pay attention to the pressure of the equipment.
(3) The surface renewal effect of the single screw extruder material in the exhaust zone is small, so the exhaust effect is poor.
(4) single screw extruder is not suitable for certain processes, such as polymer coloring, thermosetting powder processing, etc.
The single screw extruder has achieved an irreplaceable position in industrial production. Nanjing JlEYA is committed to providing various bending and rolling machines of high quality for all customers from all over the world.
Twin-screw extruders have barrels with an extension range of 4 and 6D, allowing for precise process design to meet specific customer requirements. All barrels allow for precise temperature control. Cooling is achieved by cooling water injection and high-performance electric heating rods for direct and fast heating. The auxiliary equipment of the twin-screw extruder consists of a straightening device, a preheating device, and a cooling and heating device. The following is a detailed description of the auxiliary equipment.
Here is the content list:
l Straightening device
l Preheating device
l Cooling device
One of the most common types of plastic extrusion rejects is eccentricity, and bending of the wire core in various patterns is one of the most important causes of insulation eccentricity. In sheath extrusion, scratches on the sheath surface are also often caused by the bending of the cable core. Therefore, a variety of extrusion units in the straightening device is essential. The main types of straightening devices are roller type (divided into horizontal and vertical type); pulley type (divided into single pulley and pulley group); stranded pulley type, which plays a variety of roles such as dragging, straightening, and stabilizing tension; pressure pulley type (divided into horizontal and vertical type), etc.
Cable core preheating is necessary for both insulation extrusion and sheath extrusion. For the insulation layer, especially the thin layer of insulation, the existence of pores should not be allowed, the core can be completely removed from the surface of the water, oil, and dirt through high temperature preheating before extrusion. For the sheath extrusion, the main role is to dry the cable core, to prevent the role of moisture (or moisture around the bedding layer) to make the sheath in the possibility of porosity. Preheating can also prevent the plastic from being extruded due to sudden cooling and residual internal pressure. In the process of extruding plastic, preheating can eliminate the cold line into the high-temperature heat, in contact with the plastic at the mouth of the die to form a disparity in temperature, to avoid fluctuations in plastic temperature and lead to fluctuations in extrusion pressure, to stabilize the amount of extrusion and ensure the quality of extrusion. Extrusion unit is used in the electric heating core preheating device, requires sufficient capacity, and ensures rapid temperature rise, so that the core preheating and cable core drying efficiency. The preheating temperature is restricted by the speed of wire release, generally similar to the temperature of the head.
The formed plastic extrusion layer after leaving the head should be immediately cooled and shaped, otherwise, deformation will occur under the action of gravity. The way of cooling usually uses water cooling, and according to the water temperature is different, divided into rapid cooling and slow cooling. Rapid cooling is the direct cooling of cold water, rapid cooling of plastic extrusion layer sizing is beneficial, but for crystalline polymers, due to sudden heat cooling, easy to internal residual stress in the extrusion layer organization, resulting in the use of the process of cracking, general PVC plastic layer using rapid cooling. Slow cooling is to reduce the internal stress of the product, in the cooling water tank placed in sections of different temperatures of water, so that the product gradually cool down and set, PE, PP extrusion on the use of slow cooling, that is, after hot water, warm water, cold water three cooling.
If you are engaged in a twin-screw extruder-related industry, you can consider our cost-effective products.
The engineering plastic twin screw extruder was developed based on a single screw extruder. Due to its good feed performance, mixing and plasticization performance, suction performance, and extrusion stability, it is often used in extruded products.
What are the advantages of engineering plastic twin screw extruders?
What role do pre-heaters play in the use of engineering plastic twin screw extruders?
What is the reason for the "fault" of the exhaust air opening of the engineering plastic twin screw extruder?
1. wear
By simply opening the engineering plastic twin screw extruder, the wear level of the threaded parts and the inner sockets of the cylinder can be determined at any time, so that we need to carry out effective maintenance or exchange. It is not detected if there is a problem with the extruded product causing unnecessary waste.
2. Reduce production costs
When a engineering plastic twin screw extruder is made of technical plastic Masterbatch, it is often necessary to change the color. It is necessary to change the product.
Simply open the open editing area within a few minutes. In addition, the mixing process can be performed by observing the melting profile on the entire screw. analysis. When changing the color of an ordinary engineering plastic twin screw extruder, a large amount of cleaning material is needed to clean the machine, which is time and energy consuming and wastes raw materials. The split engineering plastic twin screw extruder can solve this problem. When changing color, it takes only a few minutes to quickly open the barrel for manual cleaning, so that no or fewer cleaning agents can be used, which saves costs.
A pre-heating of the cable core is required for the use of an engineering plastic twin screw extruder. The presence of pores shall not be permitted for the insulating layer, in particular the thin insulating layer. The wire core can be completely removed from the water and oil surface by high-temperature preheating before crushing. In the case of coat extrusion, its main function is to dry the cable core to prevent the possibility of pores in the coat due to moisture (or moisture around the cushion layer). By preheating, the residual pressure of the plastic can also be prevented by discouragement during extrusion. During the plastic extrusion of the processor, preheating can eliminate the large temperature difference that occurs when the cold wire enters the high-temperature nozzle and the nozzle is in contact with the plastic, thereby avoiding the fluctuation of the plastic temperature and causing the fluctuation of the extrusion pressure. This stabilizes the extrusion volume and ensures the extrusion quality. The technical plastic engineering plastic twin screw extruder uses an electric radiator preheating device that requires sufficient capacity and guarantees rapid heating so that the core preheating and drying efficiency of the cable core is high. The pre-heat temperature is limited by the deflection speed and generally corresponds to the temperature of the machine part.
The temperature of the machine part is low and the pressure of the machine part is too high.
engineering plastic twin screw extruder The engineering plastic twin screw extruder used for profile extrusion is usually narrow-meshed and rotates in different directions, but a few also use simultaneous engineering plastic twin screw extruders, which usually work with relatively low screw speed. About ten U/min.
The rapidly combining, simultaneous engineering plastic twin screw extruder is used for composting, venting or as a continuous chemical reactor. The maximum snail speed of this extruder type is 300-600 U/min. The non-interactive extruder is used for mixing, venting, and chemical reaction. Its conveyor mechanism is very different from the interlocking extruder, which is closer to the conveyor mechanism of a single screw extruder.
These are related practices for using engineering plastic twin screw extruders. If you want to get more information about the engineering plastic twin screw extruders, please connect Nanjing JlEYA, and they will tell you more about it.
With the development of modern industry, the underwater pelletizing machine has become an important production equipment used in all aspects of production.
What is the working principle of the underwater pelletizing machine?
What is the operating procedure of the underwater pelletizing machine?
What are the reasons why people choose underwater pelletizing machine?
The material using the underwater pelletizing machine will pass through the feeding port, and under the action of the rotating screw, it will be rolled into a dough and roll forward along the screw groove. Due to the shear, compression and agitation of the screw, the material will be further mixed and plasticized. , The temperature and pressure gradually increase, showing a state of viscous flow, and passing through the machine head with a certain pressure and temperature, and finally a product of the desired shape is obtained.
(1) Check the rotation direction of the impeller of the underwater pelletizing machine. From the feed inlet, the impeller should turn counterclockwise, otherwise the motor connection should be adjusted.
(2) The starting sequence of the underwater pelletizing machine and the material conveying equipment is as follows:
Discharge belt conveyor→PL vertical impact crusher→feeding belt conveyor
The crusher must be started without load, and the material can only be fed after the crusher is running normally.
(3) The feed size is strictly in accordance with the feed size specified by the various models. It is forbidden to enter the underwater pelletizing machine with the size of the material larger than the specified size, otherwise it will cause the impeller imbalance and excessive wear of the impeller, and even block the impeller flow path and The central feed pipe prevents the crusher from working normally. When a large piece of material is found, it should be removed in time.
(4) When the discharge belt conveyor stops running, the feeding should be stopped immediately, so the discharge belt conveyor should be interlocked with the feeding system to open and stop. Otherwise, the impeller will be crushed and the motor will be burnt.
(5) The feeding of the underwater pelletizing machine should be uniform and continuous.
(6) During the operation of the underwater pelletizing machine, there must be no violent vibration or abnormal noise, otherwise, it should be stopped immediately for inspection, and the machine can only be driven in order after the fault is removed.
(7) The observation door should be sealed tightly during the working process of the underwater pelletizing machine.
The difference between the underwater pelletizing machine and other similar products is that it has a steady stream of water flowing through the mold surface, and it is in direct contact with the mold surface. The size of the pelletizing chamber is just enough to allow the pelletizing knife to rotate freely across the die surface without restricting the temperature of the water flow. The molten polymer has been extruded from the die, and the rotating knife cuts the pellets. And then the pellets are taken out of the pelletizing chamber by the temperature-regulated water and enter the centrifugal dryer. In the dryer of the underwater pelletizing machine, the water will be drained back to the storage tank, cooled and recycled; the pellets pass through the centrifugal dryer to remove the water.
This is how we see the irreplaceable role of underwater pelletizing machine in our daily lives and industrial production. Nanjing JlEYA, the pioneer of underwater pelletizing machine producing company in China, knows that every application is special. You can go and get more information about them