








Degradable plastics refer to a class of plastics whose various properties can meet the requirements of use, remain unchanged during the shelf life, and can be degraded into environmentally harmless substances under natural environment conditions after use. Therefore, it is also called environmentally degradable plastic.
There are a variety of new plastics: photodegradable plastics, biodegradable plastics, light/oxidative/biodegradable plastics, carbon dioxide-based biodegradable plastics, thermoplastic starch resin degradable plastics.
There are two main areas for the use of degradable plastics: one is the area where ordinary plastics were originally used. In these areas, the difficulty of collecting used or post-consumer plastic products will cause harm to the environment, such as agricultural mulch and single-use plastic packaging, and the second is areas where plastics are used instead of other materials. The use of degradable plastics in these areas can bring convenience, such as ball tacks for golf courses, and seedling fixing materials for tropical rainforest afforestation.
Specific applications are:
1.Agriculture, forestry and fishery, plastic film, water-retaining materials, seedling pots, seedbeds, rope nets, slow-release materials for pesticides and agricultural fertilizers.
2.Packaging industry, shopping bags, garbage bags, compost bags, disposable lunch boxes, instant noodle bowls, buffer packaging materials.
3.Sporting goods, golf tacks and tees
4.Hygiene products, women's hygiene products, baby diapers, medical mattresses, disposable haircuts.
5.Medical materials, bandages, clips, small sticks for cotton swabs, gloves, drug release materials, and surgical sutures and fracture fixation materials.
Nanjing Jieya also manufactures twin screw compounding extruder for bio-degradable material. We warmly welcome your inquiry.
Plastic extruders can be divided into single-screw extruders, twin-screw extruders, and multi-screw extruders according to their number of screws. The following are the details of the types of plastic extruders.
Here is the content list:
Classification of plastic extruders
Single-screw extruder
Twin-screw extruder
Classification of plastic extruders
1, According to the number of screws, divided into single-screw extruders, twin-screw extruders, and multi-screw extruders.
2, According to the presence or absence of a screw in the extruder, divided into screw extruders and plunger extruders.
3, According to the running speed of the screw to divide:
Ordinary extruder: speed below 100r/min.
High-speed extruder: speed of 100 to 300r/min.
Super high-speed extruder: the speed is 300~l500r/min.
4, According to the extruder assembly structure classification: there are integral extruders and separate extruders.
5, According to the spatial position of the screw in the extruder, can be divided into the horizontal extruder and vertical extruder.
6, According to whether the extruder is in the process of exhaust and can be divided into exhaust type extruder and non-exhaust type extruder
Single-screw extruder
The single-screw extruder occupies an important position both as a plasticizing and pelletizing machine and as a molding machine, and in recent years, the single-screw extruder has developed greatly. Single-screw extruders were the first extruders to gain widespread application in the plastic processing and molding field due to their simple structure and high processing efficiency. Similarly, to meet different processing needs, various equipment manufacturers have explored various screw and barrel structures. The single-screw extruder has evolved from the basic pure screw structure to various structures such as damping screw block, exhaust extrusion, slotted screw barrel, pinned barrel, building block structure, etc., thus enabling the single-screw extruder to have a wider range of molding.
Due to the small footprint of single-screw extruders, they are almost the only equipment used in the compounding and blown film fields. Single-screw extruder technology has become an important part of the extrusion process market that cannot be ignored.
Twin-screw extruder
The twin-screw extruder has less heat generated by friction, more uniform shearing of the material, larger conveying capacity of the screw, more stable extrusion volume, long stay of the material in the barrel, and uniform mixing.
The twin-screw extruder has good feeding characteristics, is suitable for powder processing, and has better mixing, exhaust, reaction, and self-cleaning functions than the single-screw extruder, characterized by the processing of plastics with poor thermal stability and co-mingled materials show its superiority. Based on the twin-screw extruder, the multi-screw extruder was developed for easier processing of co-blends with poor thermal stability.
If you want to buy an extruder, you can consider our cost-effective products. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, after 17 years of development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
The main machine of the plastic extruder is the extruder, which is composed of an extrusion system, transmission system, and heating and cooling system. The following is a detailed description of the composition of the plastic extruder.
Here is the content list:
Extrusion system
Drive System
Heating and cooling device
A homogeneous melt is plasticized bypassing the plastic through the extrusion system, which consists of a screw, barrel, hopper, head, and die.
The function of the drive system is to drive the screw, supplying the torque and speed required by the screw during the extrusion process, usually consisting of an electric motor, reducer, and bearings.
The manufacturing cost of the reducer is roughly proportional to its size and weight, provided that the structure is the same. Because the shape and weight of the reducer are large, it means that more materials are consumed in the manufacturing, and the bearings used are also larger, which increases the manufacturing cost.
For a similar screw diameter extruder, the high speed and high potency extruder consume additional energy than the traditional extruder, the motor power is doubled, and also the reducer seat range is raised consequently is critical,however a high screw speed means that an occasional reduction magnitude relation. For the same size reducer, the gear modulus of the low reduction ratio increases compared to the large reduction ratio, and the capacity of the reducer to bear the load also increases. Therefore, the rise in volume and weight of the reducer isn't linearly proportional to the rise in motor power. If the extrusion volume is employed because of the divisor and dividend by the burden of the reducer, the high speed and high potency extruder can have a smaller range and the normal extruder will have a larger number.
In terms of unit output, the small motor power and the small weight of the reducer of the high speed and high-efficiency extruder means that the manufacturing cost per unit output of the high speed and high-efficiency extruder is lower than that of the normal extruder.
Heating and cooling are necessary to enable the plastic extrusion process to proceed.
(1) Extruders usually use electric heating, which is divided into resistance heating and induction heating, with heating sheets installed in each part of the body, neck, and head. The heating device heats the plastic inside the barrel from the outside to warm it up to the temperature required for the process operation.
(2) The cooling device is installed to ensure that the plastic is in the temperature range required for the process. Specifically, it is to exclude the excess heat generated by the shear friction of the rotating screw to avoid the plastic from decomposing, scorching, or shaping difficulties due to the high temperature. Barrel cooling is divided into two kinds of water-cooled and air-cooled, generally small and medium-sized extrusion machine using air-cooled is more appropriate, large is more water-cooled or a combination of two forms of cooling; screw cooling is mainly used in the center of water-cooled, the purpose is to increase the rate of solid material delivery, stabilize the amount of rubber, while improving product quality; but the cooling at the hopper, one is to strengthen the role of solid material delivery, to prevent the plastic grain sticky blockage because of the heating the second is to ensure the normal work of the transmission part.
If you are engaged in the industry related to the extruder, you can consider our cost-effective products. Our company is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder in China.
As common extruder equipment used in the plastic processing industry, single screw extruder is mainly used for extruding soft and hard PVC, polyethylene, and other thermoplastics, which can process many kinds of plastic products, such as blown film, extruded pipe, pressboard, drawn ribbon, etc. It can also be used for melt pelletizing. The plastic extruder has advanced design, high quality, good plasticization, low energy consumption, involute gear transmission, low noise, smooth operation, high load capacity, and long life. To have a long service life of the machine, maintenance measures are indispensable, the following is a detailed description of the single-screw extruder maintenance measures.
Here is the content list:
Daily maintenance.
Regular maintenance.
1. Because the electrical control system of single-screw extruder has high requirements for ambient temperature and dustproof, the electrical system should be separated from the production site, and install ventilation or ventilation fan, it is recommended that the electrical control cabinet in a simple room, keep the room clean, ventilation, so that the indoor temperature is not higher than 40 ℃.
2. Single-screw extruderis not allowed to run empty, so as not to roll the screw and machine simple hair. Host start idling is not allowed to exceed 100r / min; start the host first low speed, after starting the host to check for abnormal noises and then slowly increase the host speed to within the allowable range of the process (can be adjusted to the best state is good). When the new machine is breaking in, the current load should be at 60-70%, and the current in normal use should preferably not exceed 90%. Note: If an abnormal sound occurs when the extruder is running, it should be stopped immediately for inspection or repair.
3. Turn on the oil pump first and turn off the oil pump after shutting down the machine; keep the water pump working during the whole production process and do not stop the pump to avoid the barrel temperature rising and causing the material in the barrel to decompose and carbonize; the asbestos wind cover of the main motor fan needs to be cleaned often to avoid the dust sticking too much to block the wind cover and cause the motor to overheat and trip due to insufficient heat dissipation.
4. Clean up the dust and dirt, tools, and debris on the surface of the unit in time.
1.Regularly check the screws and other fasteners on the surface of the single-screw extruder unit for looseness and timely and proper tightening. The lubricant level of the transmission box should be added or replaced promptly (the dirt at the bottom of the oil tank should be cleaned regularly). For new machines generally, 3 months to replace the oil, after that every six months to a year. The oil filter and oil suction pipe should be cleaned regularly (once a month).
2. Single screw extruder gearbox maintenance and general standard reducer are the same. The main thing is to check the wear and failure of gears and bearings.
3, When reinstallation please note that A, B two screws must be in the original position, can not be replaced! After the installation of the new combination of the screw on the machine, you must first use the hand pan car, such as normal rotation before the low-speed start. Screw or barrel for a long time without use, there should be anti-rust and anti-fouling measures, the screw should be placed hanging. If the threaded block is with fire, the flame should be moved left and right, while burning to clean up, and can not burn too much (blue ringers red), not to mention the thread block into the water.
4. Regularly calibrate the temperature control instrument to check the correctness of its adjustment and the sensitivity of its control.
5. In the barrel with a cooling water tank, must be used distilled water to prevent the formation of scale blocking the cooling water channel in the barrel, resulting in temperature failure. Pay attention to the appropriate amount of water in use to prevent scaling. If the blockage should be changed down the cylinder specific maintenance, no blockage and the water output is small indicates that there is scale, the tank water should be changed to dilute hydrochloric acid swishing cycle, clear scale to normal and then change the distilled water. General water in the tank is used to cool the barrel, and the natural water we pass is used to cool the tank. Regularly check the water quality of the cooling water tank, if there is turbidity, should be replaced promptly.
6.Check whether the solenoid valve is working properly, the coil has not burned out if there is a timely replacement.
7. The temperature does not rise to quite the temperature continues to rise and fall may exist for the following reasons: whether the day electric couples loose fall; heater relay is working properly; solenoid valve is working properly, timely replacement of deformation of the heater, and tighten the screws.
8. Timely clean up the dirt in the vacuum tank, and the material in the exhaust chamber so that the pipeline is smooth. Vacuum pump seals need to be replaced promptly if there is wear and tear regular inspection, the output shaft jumping is bearing damage and shaft fracture must be opened and replaced, such as the gearbox two output shaft bearing position wear is too serious, the box must be replaced to avoid greater loss of failure.
9, To drive the screw rotation of the DC motor to focus on checking the brush wear and contact, the insulation resistance value of the motor whether in the specified value should also be measured frequently. In addition, check the connection line and other components that are rusted, and the use of protective measures.
10. When the single-screw extruder needs to stop using for a long time, should be in the screw, Jane, the head, and other working surfaces coated with anti-rust grease. The small screw should be suspended in the air or placed in a special wooden box, and a wooden block pad flat, so as not to deform the screw or bruise.
11. Single-screw extruder attached to the cooling water pipe wall is prone to scale external corrosion and rust. Maintenance should be carefully checked, too much scale will block the pipeline, can not achieve the cooling effect, rust will be serious leaks, so maintenance must take descaling and anti-corrosion cooling measures.
12. Designate a person responsible for the maintenance of equipment. And each maintenance and repair detailed record is included in the plant equipment management files.
If you still have questions, you can consult our company, we are happy to answer for you. The company insists on the purpose of "quality first, customer first", and warmly welcomes new and old customers to cooperate with us.
A twin screw extruder is composed of several parts such as a transmission device, feeding device, barrel, and screw, etc. The role of each part is similar to that of the single screw extruder. So what are the main differences between the twin screw extruder and single screw extruder? The following is the detailed introduction
Here is the content list:
l Cross sectional profile
l The way of material transfer
l The material flow velocity field
The difference from the single screw extruder is that the twin screw extruder has two parallel screws in an "∞" shaped cross section. Twin screw extruders for profile extrusion are usually closely meshed and heterogeneously rotating, although a few also use co rotating twin screw extruders, which generally operate at relatively low screw speeds of about 10 r/min. High speed meshing co rotating twin screw extruders are used for blending, venting, or as continuous chemical reactors, with maximum screw speeds ranging from 300 600 r/min. Non engaging extruders are used for mixing, venting, and chemical reactions, and their conveyors are very different from those of engaging extruders, and are closer to those of single screw extruders, although they are fundamentally different.
In the single screw extruder, the solid conveying section is friction dragging and the melt conveying section is viscous dragging. The frictional properties of solid materials and the viscosity of molten materials determine the conveying behavior. If some materials have poor frictional properties, it is more difficult to transfer the material to the single screw extruder if the feeding problem is not solved. In twin screw extruders, especially meshing twin screw extruders, the material transfer is to some extent a positive displacement transfer, the degree of positive displacement depending on the proximity of the screw prongs of one screw to the relative screw grooves of the other screw. The screw geometry of a closely meshed anisotropic rotary extruder yields a high degree of positive displacement transport characteristics.
The flow velocity distribution of the material in a single screw extruder has been described fairly well, whereas the flow velocity distribution of the material in a twin screw extruder is quite complex and difficult to describe. Many researchers have analyzed the velocity field of the material without considering the material flow in the engagement zone, but the results of these analyses are very different from the actual situation. This is because the mixing characteristics and overall behavior of a twin screw extruder depend mainly on the leakage flow that occurs in the engagement zone, yet the flow in the engagement zone is quite complex. The complex flow spectrum of the material in a twin screw extruder exhibits macroscopic advantages that cannot be matched by a single screw extruder, such as adequate mixing, good heat transfer, high melting capacity, good venting capacity, and good control of the material temperature.
If you want to know more, you can consult our company. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin screw extruder, mini twin screw extruder, plastic extruder, and parallel twin screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
The difference between single screw extruder and twin screw extruder: one is a screw, the other is two screws. Both are driven by a motor. The power varies with different screw sizes. The power of 50 conical twin screw extruder is about 20kW, and 65 is about 37kW. The output is related to the material and the screw size. The output of 50 conical twin screw extruder is about 100-150kg/h, and 65 conical twin screw extruder is about 200-280kg/h. The output of a single screw is only half than twin screw extruder.
Extruders can be divided into single-screw, twin-screw and multi-screw extruders according to the number of screws. Today, the single-screw extruder is the most widely used and is suitable for extrusion processing of general materials. The twin-screw extruder has the characteristics of less heat generated by friction, relatively uniform shearing of the material, large conveying capacity of the screw, relatively stable extrusion volume, long residence of the material in the barrel, and uniform mixing.
The single-screw extruder occupies an important position both as a plasticizing and granulating machine or a molding and processing machine. In recent years, the single-screw extruder has made great progress. The large-scale single-screw extruder for granulation produced in Germany has a screw diameter of 700mm and an output of 36t/h.
The main sign of the development of single-screw extruder lies in the development of its key part, the screw. In recent years, people have carried out a lot of theoretical and experimental research on screws. There are nearly 100 types of screws. The common ones are separation type, shear type, barrier type, split type and wave type.
From the perspective of single-screw development, although the single-screw extruder has been relatively complete, with the continuous development of polymer materials and plastic products, new and special single-screw extruders with more characteristics will emerge. In general, single-screw extruders are developing in the direction of high speed, high efficiency and specialization.
The twin-screw extruder has good feeding characteristics, is suitable for powder processing, and has better mixing, exhaust, reaction and self-cleaning functions than single-screw extruders, and is characterized by processing plastics and blends with poor thermal stability. It shows its superiority even more.
underwater pelletizing machine is similar to airflow granulator and water jet granulator. The equipment part mainly covers: plastic granulator, single and twin screw plastic extruder, plastic film blowing machine, bag making machine, printing machine, coating machine, Adhesive tape machine, tape slitting machine, slitting machine, strapping machine.
What is the problem of uneven pelletizing by the underwater pelletizing machine?
What is the workflow of the underwater pelletizing machine?
What is the technological advantages of the underwater pelletizing machine?
1. underwater pelletizing machine, the machine head is not evenly heated, and the machine head temperature is stable before starting up;
2. The cooling water of the underwater pelletizing machine is boiled prematurely, and the water should be boiled when the machine head starts to discharge;
3. It is also possible that there is a problem with the hot runner design of the machine head, which is caused by uneven pressure.
Before being made into final products, most polymers must be blended and then pelletized to become marketable raw materials. The power required by the underwater pelletizing machine is directly proportional to the extrusion volume and exponentially related to the size of the filter screen. There are many different types of pelletizer designs, but all pelletizers have some common places, and they can be divided into two categories: cold pelletizing system and die face hot pelletizing system. The main difference between the two categories is the time arrangement of the pelletizing process. The cold pelletizing system cuts pellets from the solidified polymer at the end of the process; while in the die-face hot pelletizing system, pellets are cut when the molten polymer emerges from the die, and pellets are processed downstream cool down.
The underwater pelletizing machine treated by standard process has the following significant advantages:
The appearance standard of the products produced by the underwater pelletizing machine is exquisite and bright;
2. The hardness of the wear layer in contact with the material by the underwater pelletizing machine can reach HV 600-800, and the local hardness can reach HV900-1100. The hardness is increased to 2-4 times the original hardness. Compared with the non-standard machine without heat treatment, it is resistant to The wear performance is increased by 3-5 times;
3. The products of the underwater pelletizing machine are not deformed after long-term use, effectively avoiding the screw breaking due to the excessive wear of the barrel, and the stable service life is 2-3 times that of the traditional machine, which greatly reduces the investor's investment in replacement parts;
4. The wear-resistant layer of the barrel screw produced by the underwater pelletizing machine has high hardness, while the base material still retains good toughness and processing performance;
5. The service life of the screw of the underwater pelletizing machine has increased from the hundred-ton level of the ordinary plastic pelletizing machine to the thousand-ton level.
Nanjing JlEYA has focused on the production and development of underwater pelletizing machines for several years, and they have always put the needs of customers as their top priority. Here, you can choose the underwater pelletizing machine that suits your need.
The single-screw extruder has a simple design and a low price, so it is widespread and demand on the market was high.
What are the application areas and benefits of single-screw extruders?
What is the development history of the single-screw extruder?
What are the main technical parameters of the single-screw extruder?
The single-screw extruder is mainly used for extruding soft and hard polyvinyl chloride, polyethylene, and other thermoplastic. It can process a variety of plastic products such as films, tubes, plates, tapes, etc., can also be used for granulation.
The single-screw extruder is characterized by advanced design, high quality, good plasticization, and low energy consumption. It uses an evolutionary drive that is characterized by low noise development, stable operation, high load capacity, and long service life.
The single-screw extruder is one of the most important devices for the processing of plastic molding parts. It uses external energy transfer and heat transfer of external heating elements to carry out the transport of plastics solids, compaction, melting, shielding, and extrusion forms.
Since the birth of the snail extruder, it has evolved from an ordinary snail extruder to a new type of snail extruder after almost a hundred years of development. Although there are many types of new single-screw extruders, the extrusion machine is the same.
The extrusion process of the traditional snail extruder is realized by heating outside the cylinder, solid and cylinder, snail friction, and melting shear force.
"friction coefficient" and "friction force", "viscosity" and "shear tension" are the main factors influencing the performance of conventional screw extruders. The extrusion process from the machine is unstable and difficult to control, especially for some heat-sensitive plastics with poor thermal stability and high viscosity.
1. Screw diameter: refers to the diameter of the outer circle of the screw, marked with D, and the unit is millimeter (mm).
2. Proportion of screw length to diameter: refers to the ratio of the length L of the working part of the screw (the length of the threaded part, i.e. the length from the center line of the feed opening to the end of the screw) and the screw diameter D, expressed by L/D.
3. Snail speed range: refers to the highest speed of the snail up to the lowest speed of the snail; n is used to represent the speed of the snail, and the unit is revolutions per minute (U/min).
4. The power of the main screw drive engine: expressed by P, the unit is kilowatt (kW).
5. Heating performance of the extruder cylinder: expressed by E is the unit kilowatt (kV).
6. The output capacity of the extruder: expressed by Q, the unit is kilogram per hour (kg/h).
7. The height of the extruder rim: refers to the distance from the center line of the screw to the ground, expressed by H, and the unit is millimeters (mm).
8. Extruder outer dimensions: refers to total length (x) total width (x) total height expressed by L x B x H, and the unit is millimeters or meters (m m or m)
9. Extruder quality: expressed in W, the unit is kilogram or tonne (kg or t).
We can see the huge role that single-screw extruders play in the production industry, and they have become indispensable components. And Nanjing JlEYA a Chinese pioneer in single-screw extruder production,has committed to providing the most suitable single-screw extruder at a reasonable price, and whatever it takes to satisfy the customer’s needs.