








In terms of the principle of motion, there are different types of twin-screw extruderswith isotropic and anisotropic meshing and non-meshing types. So what are the types of twin-screw extruders? And what are the application areas? The following is a detailed introduction.
Here is the content list:
l Isotropic twin-screw extruder
l Anisotropic twin-screw extruder
l Non-Engaging Twin-Screw Extruders
l SHJ-20 twin-screw laboratory extruder
l Application areas
These extruders are available at low and high speeds, the former mainly for profile extrusion, while the latter is used for special polymer processing operations.
(1) Close-meshing extruder. Low-speed extruders have a closely meshed screw geometry, where the profile of one screw is closely matched to the profile of the other screw, i.e., a conjugate screw profile.
(2) Self-cleaning extruder. High-speed co-rotating extruders have a closely matched screw-prong profile. This screw can be designed to have a fairly small screw gap so that the screw has a closed self-cleaning effect, this twin-screw extruder is called a tight self-cleaning co-rotating twin-screw extruder.
The tightly meshed anisotropic twin-screw extruder has a small gap between the two screw grooves (much smaller than that in a co-engaged twin-screw extruder) so that a positive conveying characteristic can be achieved.
The center distance between the two screws of a non-engaging twin-screw extruder is greater than the sum of the radii of the two screws.
It is suitable for universities, colleges, and scientific research laboratories for process and formula development, etc. It has the features of beautiful appearance, compact structure, easy to use and maintain, and precise control of process conditions. Gearbox homemade torque level: T/A3≤8 national standard main parts, twin-screw extruder new structure design, and hardened gear teeth of high precision grinding, to ensure that the gearbox works efficiently for a long time. Screw self-made: Screw elements with tightly meshed design, block type, can be easily replaced to suit different materials. Barrel captive: The precision grade of the twin-screw extruder can reach T6, favorable to energy saving, and the block type design makes various combinations possible.
The two main areas of application of twin-screw extruders are extrusion of thermosensitive materials such as PVC pipes and profiles and processing of special polymers such as blending, venting, chemical reactions, etc. Twin-screw extruders for profile extrusion have intermeshing screw ribs and grooves and operate at a low speed of about 10/min or less. Compared to single screws, twin-screw extruders have much better feeding and conveying performance, especially for those difficult to feed and easy to slip, such as fibrous, powdery, and greasy materials. The short and uniform material retention time, better mixing, and larger heat transfer area allow for good material temperature control, which is especially important for processing heat-sensitive materials.
If you want to buy a twin-screw extruder, you can consider our cost-effective products.
Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, After 17 years of development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
DRIVE SECTION
The drive section of the twin screw extruder consists of 3 parts: motor, clutch, and gearbox.
The reduction and distribution gear unit reduces the motor speed to the screw shaft speed and distributes the input torque to the two output shafts. Clutch is installed between the drive motor and the gearbox drive shaft.
PROCESSING SECTION
The processing section of the twin screw extruder in SHJ series extruder consists of individual barrel sections which are replaceable. Depending on the process tasks, reserve feed port, liquid injection port or twin screw side feed port is available.
Owing to the modular design of the twin screw extruder screw elements and screw barrels, conveying, plasticizing, homogenizing, pressure build-up and devolatilization zones can be established, depending on the process task.
For product intake and conveying, screw elements are used. The extruder can be fed with powder, pellets, chips, melt, paste, etc.
Plasticizing, mixing and dispersing are done by the twin screw extruder kneading elements. By varying the thickness of the kneading disks and their angle of stagger, their mixing, shearing and dispersing action can be adjusted to the individual requirements.
The screw elements are arranged on screw shafts. The co-rotating and closely intermeshing screw shafts have a sealing profile.
The screw barrels are supported by barrel supports. Axial displacement of the processing section resulting from thermal dilatation is absorbed by these supports.
EXTRUSION PART
The discharge section of the twin screw extruder consists of die head and screen changer, which is installed at the end of twin screw extruder discharging direction. There are several types of die heads and screen changers to meet the requirements of different polymers and processing technology.
The single screw extruder is mainly used for extruding soft and hard polyvinyl chloride, polyethylene, and other thermoplastic. It can be a variety of plastic products such as bubble sheets, extruded pipes, press plates, ribbons, etc. process and can also be used for melting granulation. The plastic extruder is characterized by advanced design, high quality, good plasticization, and low energy consumption. It uses an evolutionary drive and is characterized by low noise development, stable operation, great durability, and long service life.
What are the relevant parameters of a single screw extruder?
What are the properties of a single screw extruder?
For which materials can a single screw extruder be used?
The relevant parameters of the insertion extruder are arranged from left to right: the first field is the plastic machine code as S; the second box is the extruder code as J; the third field is the code for the different construction firms of the extruder. The three bars are combined, the plastic extruder is SJ; the ventilated plastic extruder is SJP; the plastic foam extruder is SJF; the extruder with plastic input is SJW; the plastic shoe extruder is SJE; The cascade plastic extruder is SJJ; the double-screw extruder is SJS; the conical double-screw extruder is SJSF; the multi-screw extruder is SJD. The fourth box is for auxiliary machinery with the code name F; in the case of an extruder unit with the code name E. The fifth parameter refers to the snail diameter and the ratio of length to snail diameter. The sixth field refers to the product's pattern sequences, which in the order of letters A, B, C... is arranged and the sample number is not given in the first sample.
(1) The material support of the inlet extruder is mainly based on friction, which limits the conveyance performance of the inlet extruder. The addition of powder, paste, fiberglass, and inorganic fillers is difficult.
(2) If the head pressure of the inlet extruder is high, the counter current increases, which reduces the productivity of the inlet extruder.
(3) Injected exhaust gas extruder material has a low surface regeneration effect in the suction zone, so the suction effect of the inlet extruder is poor.
(4) Injection extruder is used for certain processes, such as polymer dyeing, heat-resistant powder processing, etc. not suitable. The single screw extruder is a high-speed and high-yield extrusion based on a high level.
single screw extruder series, single screw extruders can be used for the processing of PP, PE, PS, ABS, PMMA, PVC, and other thermoplastic tubes, plates, plates, rods, profile materials, and plastic granulation products. For different raw materials and product specifications, the screw assumes different length-diameter ratios and compression ratios, and the flow assumes different structures. Choose the right cylinder, screw, and drive mechanism to meet the processing requirements of high-quality products.
The use of single screw extruders is becoming increasingly widespread. Nanjing JlEYA has been concentrating on single screw extruders for several years. They will make every effort to meet the needs of users.
Product Description
Weigh the complete feeding system (silo, feeder and bulk material) through static scales and control the discharge flow of bulk materials through variable speed motors or electric vibrators. Material is discharged from the system (via screw, vibrating tube or trough), the "loss" measured per unit of time (dv/dt) is compared to the required feed rate (preset value), the actual (measured) The difference between the flow rate and the desired (preset) flow rate generates a corrective signal through the dosing controller, which automatically adjusts the dosing rate to maintain the accurate dosing amount without process lag. When the weight measured in the silo reaches the low level of the silo (refilling), the controller will control the feeding system according to the volumetric feeding, and then the silo will be reloaded quickly (manually or automatically), and the weight loss controller will restart . In a batch loss-in-weight system, the design is similar to a continuous loss-in-weight system, however, the accuracy of the final weight of the feed (batch) cycle is higher than the actual feed amount control. The controller accomplishes fast dosing by providing a high dosing signal to the variable speed drive, then transitions to a low dosing control signal for precise control at the end of the batch. Technical parameter
Technical indicators:
Metering accuracy ≤0.5%
Ingredient accuracy ≤0.5%
Batching measurement control range 0.01-300t/h
Scope of application
Continuous stabilized soil, cement batching in concrete mixing plants, sintering quantitative control feeding, coal powder quantitative control feeding and batching of various thick slurries, etc.
Product introduction of loss-in-weight scale: the loss-in-weight feeder consists of a hopper, a feeder (single and double-shaft screw feeder), a weighing system and a regulator. During operation, the hopper, material and feeder are weighed continuously. As the material is delivered, the actual rate of weight loss is measured and compared to the desired rate of weight loss (set point). Automatically corrects for deviations from setpoint by adjusting feeder rates. Thus, the material can be fed continuously and evenly and accurately.
Applicable scope: granule, powder, calcium carbonate, talcum powder, resin film powder, flour, starch, etc. Powder gravimetric feeder: solves the problem of feeding metering and feeding with poor fluidity while pellet gravimetric feeder solve any bridging problems that may occur.
PVC compounding extruder is divided into RPVC pipe and SPVC pipe, RPVC pipe is easy to cut, welding, bonding, heating can be bent and therefore very easy to install and use. SPVC pipe has excellent chemical stability excellent electrical insulation and good flexibility and colorability this pipe is often used to replace rubber pipe to transport liquid and corrosive media also used as cable casing and wire insulation pipe, etc. So how do choose raw materials and the operation of PVC compounding extruder? The following is a detailed introduction
Here is the content list:
Raw material selection
Safety operating procedures
PVC compounding extruder in the production of hard pipe resin should be selected from the lower polymerization degree of SG-5 resin polymerization degree of the higher its physical and mechanical properties and heat resistance is better, but the resin liquidity is poor to bring some difficulties in processing, so generally choose viscosity of 1.7 ~ 1.8 × 10-3Pa-s SG-5 resin is appropriate. Hard pipe generally uses lead-based stabilizers whose thermal stability is good commonly used trisodium lead but its lubricity is poor usually and good lubricity of lead, barium soap type and use. Processing hard tube lubricant selection and use are very important to consider both internal lubrication to reduce intermolecular forces to reduce the viscosity of the melt are conducive to molding and to consider external lubrication to prevent the melt and hot metal adhesion to make the product surface shiny. Internal lubrication is generally used metal soap type external lubrication with low melting point wax. Filler mainly with calcium carbonate and barium barite powder calcium carbonate to make the pipe surface performance of good barium can improve the molding of the pipe easy to shape both can reduce costs but the amount of too much will affect the performance of the pipe pressure pipe and corrosion-resistant pipe is best not to add or add less filler.
1. Personnel without induction test and operation training cannot operate the extruder independently.
2. People who have poor eyesight and slow response can not be on duty to operate.
3. Before starting the machine to do a good job of environmental health around the PVC compounding extruder equipment, equipment around the pile of items not related to production.
4. Check the safety settings of the extruder before production for damage and test whether it can work effectively. Check whether the connection bolts are loose and whether the safety guards are firm.
5. Check the lubrication parts, remove the dirt, and refill the lubricant.
6. PVC compounding extruder barrel and die heating constant temperature time to ensure that the material temperature does not reach the process requirements when driving production.
7. Before starting the screw drive motor to use the hand plate support V pulley, should be flexible rotation, no blocking phenomenon; then start the lubricating oil pump work 3min before starting the screw rotation at low speed.
8. Screw airlift time should not exceed 2 ~ 3min.
9. PVC compounding extruder barrel before adding material to check the barrel, hopper, there is no foreign matter; raw materials should be free of metal, sand, and other impurities to Prevent damage to the screw.
10. The screw starts, the transmission parts work sound normal, the main motor current within the allowable rated value, before allowing the barrel to add material, adding material should first be a small amount of evenly added material.
11. When adjusting the die gap or clearing the dirty material, the operator should wear gloves and not face the barrel and die to prevent the molten material from spraying out of the die and scalding the body.
12. Extruder driving operation is not allowed to repair, and no one is allowed to do any work on the equipment at this time.
13. In case of the following phenomena, should be an emergency stop.
Bearing parts of the high temperature, lubricating oil (grease) out; motor odor, smoke, or shell temperature is too high; speed box lubricating oil temperature, smoke; transmission parts emit irregular abnormal sound; machine work produces violent vibration; screw suddenly stop rotating.
14. PVC compounding extruder equipment on the safety cover and the location of the safety alarm device is not allowed to change at will, not to mention artificially caused by the malfunction.
15. Find that the equipment leakage, oil leakage phenomenon should be timely maintenance troubleshooting, no water, oil flow around the machine.
If you have questions about how to use the PVC composite extruder, you can contact us on the official website. We are happy to answer for you.
underwater pelletizing machine plays an irreplaceable role in the current industrial production process. Only when the underwater pelletizing machine is used correctly can the greatest effect be achieved.
What problems should be paid attention to when using underwater pelletizing machine?
What is the cause of the friction clutch failure of the underwater pelletizing machine and its solution?
How can the underwater pelletizing machine make the pellets cut out by pelletizing have no pores?
1. Pay attention to the temperature change of the underwater pelletizing machine at any time. When touching the sliver with clean hands, the temperature should be raised immediately. Until the sliver touches your hand, it is normal.
2. When the bearing part of the reducer burns, or is accompanied by noise, it should be repaired in time and refueled.
3. When the bearing parts at both ends of the bearing chamber of the underwater pelletizing machine are hot or there is noise, stop the machine for maintenance and add butter. During normal operation, add butter to the bearing chamber every 5-6 days.
4. Pay attention to the operating rules of the underwater pelletizing machine; such as: the machine temperature is high or low, the speed is fast or slow, and it can be dealt with in time according to the situation.
5. When the operation of the underwater pelletizing machine is unstable, pay attention to check whether the gap of the coupling anastomosis is too tight, and adjust it in time to loosen it.
Reason analysis: The instantaneous starting voltage of the main motor of the underwater pelletizing machine is too low, the friction disc and the friction disc are overheated, the friction disc and the friction disc are aging, and the air pressure of the friction disc is too low, etc., which can cause the clutch to disengage.
Solution: When starting the main motor of the underwater pelletizing machine, avoid peak power consumption and reduce the feeding load. The minimum restart interval is 30 minutes; in summer, when the main motor is restarted more than twice, it should be extended. Interval time or forced cooling with a fan. Blow with instrument wind and wipe off the dirt on the surface of the friction plate and friction plate with a rag. If the underwater pelletizing machine wears a lot or the surface becomes "vitrified", replace the friction plate and friction plate. Confirm whether the air pressure value can make the friction disc and the friction plate fit together.
One: The different materials used by the underwater pelletizing machine must be separated clearly;
Two: The products produced by the underwater pelletizing machine should be dewatered as much as possible after being crushed and cleaned;
Three: The vent hole on the screw of the underwater pelletizing machine should be unblocked.
Nanjing JlEYA has various underwater pelletizing machines that can provide the increasing of products, and make them more effective, reliable, and consistent.
Plastic extruders can be divided into single-screw extruders, twin-screw extruders, and multi-screw extruders according to their number of screws. The following are the details of the types of plastic extruders.
Here is the content list:
Classification of plastic extruders
Single-screw extruder
Twin-screw extruder
Classification of plastic extruders
1, According to the number of screws, divided into single-screw extruders, twin-screw extruders, and multi-screw extruders.
2, According to the presence or absence of a screw in the extruder, divided into screw extruders and plunger extruders.
3, According to the running speed of the screw to divide:
Ordinary extruder: speed below 100r/min.
High-speed extruder: speed of 100 to 300r/min.
Super high-speed extruder: the speed is 300~l500r/min.
4, According to the extruder assembly structure classification: there are integral extruders and separate extruders.
5, According to the spatial position of the screw in the extruder, can be divided into the horizontal extruder and vertical extruder.
6, According to whether the extruder is in the process of exhaust and can be divided into exhaust type extruder and non-exhaust type extruder
Single-screw extruder
The single-screw extruder occupies an important position both as a plasticizing and pelletizing machine and as a molding machine, and in recent years, the single-screw extruder has developed greatly. Single-screw extruders were the first extruders to gain widespread application in the plastic processing and molding field due to their simple structure and high processing efficiency. Similarly, to meet different processing needs, various equipment manufacturers have explored various screw and barrel structures. The single-screw extruder has evolved from the basic pure screw structure to various structures such as damping screw block, exhaust extrusion, slotted screw barrel, pinned barrel, building block structure, etc., thus enabling the single-screw extruder to have a wider range of molding.
Due to the small footprint of single-screw extruders, they are almost the only equipment used in the compounding and blown film fields. Single-screw extruder technology has become an important part of the extrusion process market that cannot be ignored.
Twin-screw extruder
The twin-screw extruder has less heat generated by friction, more uniform shearing of the material, larger conveying capacity of the screw, more stable extrusion volume, long stay of the material in the barrel, and uniform mixing.
The twin-screw extruder has good feeding characteristics, is suitable for powder processing, and has better mixing, exhaust, reaction, and self-cleaning functions than the single-screw extruder, characterized by the processing of plastics with poor thermal stability and co-mingled materials show its superiority. Based on the twin-screw extruder, the multi-screw extruder was developed for easier processing of co-blends with poor thermal stability.
If you want to buy an extruder, you can consider our cost-effective products. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, after 17 years of development, now we have 20,000 square meters workshop with annual sales over 300+ sets, export over 60 countries.
The difference between single screw extruder and twin screw extruder: one is a screw, the other is two screws. Both are driven by a motor. The power varies with different screw sizes. The power of 50 conical twin screw extruder is about 20kW, and 65 is about 37kW. The output is related to the material and the screw size. The output of 50 conical twin screw extruder is about 100-150kg/h, and 65 conical twin screw extruder is about 200-280kg/h. The output of a single screw is only half than twin screw extruder.
Extruders can be divided into single-screw, twin-screw and multi-screw extruders according to the number of screws. Today, the single-screw extruder is the most widely used and is suitable for extrusion processing of general materials. The twin-screw extruder has the characteristics of less heat generated by friction, relatively uniform shearing of the material, large conveying capacity of the screw, relatively stable extrusion volume, long residence of the material in the barrel, and uniform mixing.
The single-screw extruder occupies an important position both as a plasticizing and granulating machine or a molding and processing machine. In recent years, the single-screw extruder has made great progress. The large-scale single-screw extruder for granulation produced in Germany has a screw diameter of 700mm and an output of 36t/h.
The main sign of the development of single-screw extruder lies in the development of its key part, the screw. In recent years, people have carried out a lot of theoretical and experimental research on screws. There are nearly 100 types of screws. The common ones are separation type, shear type, barrier type, split type and wave type.
From the perspective of single-screw development, although the single-screw extruder has been relatively complete, with the continuous development of polymer materials and plastic products, new and special single-screw extruders with more characteristics will emerge. In general, single-screw extruders are developing in the direction of high speed, high efficiency and specialization.
The twin-screw extruder has good feeding characteristics, is suitable for powder processing, and has better mixing, exhaust, reaction and self-cleaning functions than single-screw extruders, and is characterized by processing plastics and blends with poor thermal stability. It shows its superiority even more.