








Today, we loaded 2x40HQ export to Vietnam.
One is SHJ-50 twin screw extruder, the other is SHJ-72 twin screw extruders. Both extruders are used for making filler masterbatch.
Nanjing Jieya is a leading manufacturer of twin screw compounding extruders with over 20 years experience. We will offer you the top quality with best price.
We warmly welcome your inquiry.
DRIVE SECTION
The drive section of the twin screw extruder consists of 3 parts: motor, clutch, and gearbox.
The reduction and distribution gear unit reduces the motor speed to the screw shaft speed and distributes the input torque to the two output shafts. Clutch is installed between the drive motor and the gearbox drive shaft.
PROCESSING SECTION
The processing section of the twin screw extruder in SHJ series extruder consists of individual barrel sections which are replaceable. Depending on the process tasks, reserve feed port, liquid injection port or twin screw side feed port is available.
Owing to the modular design of the twin screw extruder screw elements and screw barrels, conveying, plasticizing, homogenizing, pressure build-up and devolatilization zones can be established, depending on the process task.
For product intake and conveying, screw elements are used. The extruder can be fed with powder, pellets, chips, melt, paste, etc.
Plasticizing, mixing and dispersing are done by the twin screw extruder kneading elements. By varying the thickness of the kneading disks and their angle of stagger, their mixing, shearing and dispersing action can be adjusted to the individual requirements.
The screw elements are arranged on screw shafts. The co-rotating and closely intermeshing screw shafts have a sealing profile.
The screw barrels are supported by barrel supports. Axial displacement of the processing section resulting from thermal dilatation is absorbed by these supports.
EXTRUSION PART
The discharge section of the twin screw extruder consists of die head and screen changer, which is installed at the end of twin screw extruder discharging direction. There are several types of die heads and screen changers to meet the requirements of different polymers and processing technology.
In plastic extrusion molding equipment, the plastic extruder is usually called the main machine, while its subsequent equipment plastic extrusion molding machine is called the auxiliary machine. Plastic extruders can produce a variety of plastic products. Therefore, the plastic extrusion molding machine is one of the widely used machines in the plastics processing industry, both now and in the future. So what are the characteristics of plastic extruders? The following is a detailed introduction.
Here is the content list:
Modularity and specialization
High efficiency and multi-functionalization
Enlargement and precision
Intelligent and networked
The modular production of plastic extruders can adapt to the special requirements of different users, shorten the research and development cycle of new products, and strive for a larger market share; while specialized production can arrange the production of each system module component of extrusion molding equipment at a fixed point or even for global procurement, which is very beneficial to ensure the quality of the whole period, reduce costs and accelerate the capital turnover.
The high efficiency of plastic extruders is mainly reflected in the high output, low energy consumption, and low manufacturing cost. In terms of function, the screw plastic extruder has been used not only for extrusion molding and mixing processing of polymer materials but its use has been broadened to food, feed, electrode, explosives, building materials, packaging, pulp, ceramics, and other fields.
Achieving the large-scale plastic extruder can reduce the production cost, which is a more obvious advantage in the large twin-screw plastic pelletizing set, film blowing set, pipe extrusion set, etc. National key construction services required for major technical equipment, large-scale ethylene project supporting one of the three key equipment of large extrusion pelletizing unit long-term dependence on imports, so we must accelerate the localization process to meet the development needs of the petrochemical industry.
Plastic extruders in developed countries have generally used modern electronic and computer control technology, the entire extrusion process parameters such as melt pressure and temperature, the temperature of each section of the body, the main screw and feeding screw speed, feeding volume, the ratio of various raw materials, motor current and voltage and other parameters for online detection, and the use of microcomputer closed-loop control. This is extremely beneficial to ensure the stability of process conditions and improve the precision of products.
If you need to buy a plastic extruder, you can consider our cost-effective products. Nanjing JlEYA is the leading manufacturer extruder manufacturer specializing in a twin-screw extruder, mini twin screw extruder, plastic extruder, and parallel twin-screw extruder in China, which is widely used in compounding, modification, polymerization, devolatilization, reaction, recycling, etc. After 17 years of development, now we have a 20,000 square meters workshop with annual sales of over 300+ sets, export over 60 countries.
JIEYA has the most experienced technical core team, with extensive experience in system integration of the development manufacturing, materials processing, application technology, and other fields.
The main machine of the plastic extruder is the extruder, which is composed of an extrusion system, transmission system, and heating and cooling system. The following is a detailed description of the composition of the plastic extruder.
Here is the content list:
Extrusion system
Drive System
Heating and cooling device
A homogeneous melt is plasticized bypassing the plastic through the extrusion system, which consists of a screw, barrel, hopper, head, and die.
The function of the drive system is to drive the screw, supplying the torque and speed required by the screw during the extrusion process, usually consisting of an electric motor, reducer, and bearings.
The manufacturing cost of the reducer is roughly proportional to its size and weight, provided that the structure is the same. Because the shape and weight of the reducer are large, it means that more materials are consumed in the manufacturing, and the bearings used are also larger, which increases the manufacturing cost.
For a similar screw diameter extruder, the high speed and high potency extruder consume additional energy than the traditional extruder, the motor power is doubled, and also the reducer seat range is raised consequently is critical,however a high screw speed means that an occasional reduction magnitude relation. For the same size reducer, the gear modulus of the low reduction ratio increases compared to the large reduction ratio, and the capacity of the reducer to bear the load also increases. Therefore, the rise in volume and weight of the reducer isn't linearly proportional to the rise in motor power. If the extrusion volume is employed because of the divisor and dividend by the burden of the reducer, the high speed and high potency extruder can have a smaller range and the normal extruder will have a larger number.
In terms of unit output, the small motor power and the small weight of the reducer of the high speed and high-efficiency extruder means that the manufacturing cost per unit output of the high speed and high-efficiency extruder is lower than that of the normal extruder.
Heating and cooling are necessary to enable the plastic extrusion process to proceed.
(1) Extruders usually use electric heating, which is divided into resistance heating and induction heating, with heating sheets installed in each part of the body, neck, and head. The heating device heats the plastic inside the barrel from the outside to warm it up to the temperature required for the process operation.
(2) The cooling device is installed to ensure that the plastic is in the temperature range required for the process. Specifically, it is to exclude the excess heat generated by the shear friction of the rotating screw to avoid the plastic from decomposing, scorching, or shaping difficulties due to the high temperature. Barrel cooling is divided into two kinds of water-cooled and air-cooled, generally small and medium-sized extrusion machine using air-cooled is more appropriate, large is more water-cooled or a combination of two forms of cooling; screw cooling is mainly used in the center of water-cooled, the purpose is to increase the rate of solid material delivery, stabilize the amount of rubber, while improving product quality; but the cooling at the hopper, one is to strengthen the role of solid material delivery, to prevent the plastic grain sticky blockage because of the heating the second is to ensure the normal work of the transmission part.
If you are engaged in the industry related to the extruder, you can consider our cost-effective products. Our company is a leading extruder manufacturer specializing in a twin-screw extruder, micro twin-screw extruder, plastic extruder, and parallel twin-screw extruder in China.
The basic mechanism of the twin screw extrusion process is simply that a screw rotates in the barrel and pushes the plastic forward. The screw structure is a bevel or ramp wrapped around a central layer, the purpose of which is to increase the pressure to overcome the higher resistance. What do I need to pay attention to when using a twin screw extruder? The following is a detailed description.
Here is the content list:
l Structural principles
l Temperature principles
l Speed reduction principle
For the extruder, there are three kinds of resistance to overcome when working: one is friction, which contains the friction of the solid particles (feed) on the barrel wall and the mutual friction between them during the first few turns of the screw (feed area); the second is the adhesion of the melt on the barrel wall, and the third is the resistance of the internal logistics of the melt when it is pushed forward.
According to Newton's theorem, if an object is at rest in a certain direction, then the object is in a state of equilibrium balance of forces in this direction. For the circumferential movement of the screw, it is no axial motion, that is, the axial force on the screw is in equilibrium. So if the screw exerts a large forward thrust on the plastic melt, it also exerts a backward thrust on another object of the same magnitude but in the same direction. The thrust is exerted on the thrust bearing behind the feed opening. Most single screws have right hand threads, and if viewed from the back, they rotate backward, and they spin backward out of the barrel by rotational motion. In some twin screw extruders, however, the two screws rotate backward and cross each other in both barrels, so one must be right handed and one left handed, and in the case of an occluding twin screw, both screws rotate in the same direction and must therefore have the same orientation. However, in either case, there are thrust bearings that withstand backward forces and still comply with Newton's theorem.
Plastics extruded by twin screw extruders are thermoplastics, which melt when heated and solidify again when cooled. Thus, heat is needed during the extrusion process to ensure that the plastic can reach the melting temperature. So where does the heat to melt the plastic come from? First of all, the pound feed preheat and barrel/die heaters may play a role and are very important at startup. In addition, the motor feed energy, the frictional heat generated in the barrel as the motor overcomes the resistance of the viscous melt and turns the screw, is the most important heat source for all plastics, except for small systems, low speed screws, high melt temperature plastics, and extrusion coating applications. In operation, it is important to recognize that the barrel heater is not the primary heat source and that it may play a smaller role in extrusion than we might expect. The post barrel temperature is more important because it affects the rate of solids transport in the dentition or feed. In general, except for a specific purpose (such as varnishing, fluid distribution, or pressure control), the die head and die temperature should be at or near the temperature required for the melt.
In most twin screw extruders, the screw speed is varied by adjusting the motor speed. The drive motor usually turns at a full speed of about 1750 rpm, which is too fast for an extruder screw. If it turns at such a fast speed, too much frictional heat is generated and a uniform, the well mixed melt cannot be prepared because the retention time of the plastic is too short. A typical speed reduction ratio should be between 10:1 and 20:1, with either a gear or pulley set for the first stage, but with a gear and a screw positioned in the center of the last large gear for the second stage. For some slow running machines (eg. twin screws for UPVC), there may be three reduction stages and the maximum speed may be as low as 30 rpm or less (ratio up to 60:1). On the other hand, some very long twin screws for mixing can run at 600 rpm or faster, thus requiring a very low reduction rate and more deep cooling. If the reduction rate is incorrectly matched to the job, too much energy will be wasted. It may be necessary to add a pulley set between the motor and the first deceleration stage where the maximum speed is changed, which either increases the screw speed even beyond the previous limit or reduces the maximum speed. This increases the available energy, reduces the current value, and avoids motor failure, in both cases, the output may increase due to the material and its cooling needs.
If you still have questions, you can consult our company. Nanjing JlEYA is the leading professional manufacturer of twin screw extruders in China.
2022 CIM: Compounding Intelligent Manufacturing Conference is coming.
Nanjing Jieya team warmly welcome your visiting.
Booth no.: E10
Date: 2022.9.14-16
Address: Suzhou, China
See you~
The engineering plastic twin screw extruder was developed based on a single screw extruder. Due to its good feed performance, mixing and plasticization performance, suction performance, and extrusion stability, it is often used in extruded products.
What are the advantages of engineering plastic twin screw extruders?
What role do pre-heaters play in the use of engineering plastic twin screw extruders?
What is the reason for the "fault" of the exhaust air opening of the engineering plastic twin screw extruder?
1. wear
By simply opening the engineering plastic twin screw extruder, the wear level of the threaded parts and the inner sockets of the cylinder can be determined at any time, so that we need to carry out effective maintenance or exchange. It is not detected if there is a problem with the extruded product causing unnecessary waste.
2. Reduce production costs
When a engineering plastic twin screw extruder is made of technical plastic Masterbatch, it is often necessary to change the color. It is necessary to change the product.
Simply open the open editing area within a few minutes. In addition, the mixing process can be performed by observing the melting profile on the entire screw. analysis. When changing the color of an ordinary engineering plastic twin screw extruder, a large amount of cleaning material is needed to clean the machine, which is time and energy consuming and wastes raw materials. The split engineering plastic twin screw extruder can solve this problem. When changing color, it takes only a few minutes to quickly open the barrel for manual cleaning, so that no or fewer cleaning agents can be used, which saves costs.
A pre-heating of the cable core is required for the use of an engineering plastic twin screw extruder. The presence of pores shall not be permitted for the insulating layer, in particular the thin insulating layer. The wire core can be completely removed from the water and oil surface by high-temperature preheating before crushing. In the case of coat extrusion, its main function is to dry the cable core to prevent the possibility of pores in the coat due to moisture (or moisture around the cushion layer). By preheating, the residual pressure of the plastic can also be prevented by discouragement during extrusion. During the plastic extrusion of the processor, preheating can eliminate the large temperature difference that occurs when the cold wire enters the high-temperature nozzle and the nozzle is in contact with the plastic, thereby avoiding the fluctuation of the plastic temperature and causing the fluctuation of the extrusion pressure. This stabilizes the extrusion volume and ensures the extrusion quality. The technical plastic engineering plastic twin screw extruder uses an electric radiator preheating device that requires sufficient capacity and guarantees rapid heating so that the core preheating and drying efficiency of the cable core is high. The pre-heat temperature is limited by the deflection speed and generally corresponds to the temperature of the machine part.
The temperature of the machine part is low and the pressure of the machine part is too high.
engineering plastic twin screw extruder The engineering plastic twin screw extruder used for profile extrusion is usually narrow-meshed and rotates in different directions, but a few also use simultaneous engineering plastic twin screw extruders, which usually work with relatively low screw speed. About ten U/min.
The rapidly combining, simultaneous engineering plastic twin screw extruder is used for composting, venting or as a continuous chemical reactor. The maximum snail speed of this extruder type is 300-600 U/min. The non-interactive extruder is used for mixing, venting, and chemical reaction. Its conveyor mechanism is very different from the interlocking extruder, which is closer to the conveyor mechanism of a single screw extruder.
These are related practices for using engineering plastic twin screw extruders. If you want to get more information about the engineering plastic twin screw extruders, please connect Nanjing JlEYA, and they will tell you more about it.
Degradable plastics refer to a class of plastics whose various properties can meet the requirements of use, remain unchanged during the shelf life, and can be degraded into environmentally harmless substances under natural environment conditions after use. Therefore, it is also called environmentally degradable plastic.
There are a variety of new plastics: photodegradable plastics, biodegradable plastics, light/oxidative/biodegradable plastics, carbon dioxide-based biodegradable plastics, thermoplastic starch resin degradable plastics.
There are two main areas for the use of degradable plastics: one is the area where ordinary plastics were originally used. In these areas, the difficulty of collecting used or post-consumer plastic products will cause harm to the environment, such as agricultural mulch and single-use plastic packaging, and the second is areas where plastics are used instead of other materials. The use of degradable plastics in these areas can bring convenience, such as ball tacks for golf courses, and seedling fixing materials for tropical rainforest afforestation.
Specific applications are:
1.Agriculture, forestry and fishery, plastic film, water-retaining materials, seedling pots, seedbeds, rope nets, slow-release materials for pesticides and agricultural fertilizers.
2.Packaging industry, shopping bags, garbage bags, compost bags, disposable lunch boxes, instant noodle bowls, buffer packaging materials.
3.Sporting goods, golf tacks and tees
4.Hygiene products, women's hygiene products, baby diapers, medical mattresses, disposable haircuts.
5.Medical materials, bandages, clips, small sticks for cotton swabs, gloves, drug release materials, and surgical sutures and fracture fixation materials.
Nanjing Jieya also manufactures twin screw compounding extruder for bio-degradable material. We warmly welcome your inquiry.